Carbon dioxide capture in gallate-based metal-organic frameworks

被引:31
|
作者
Chen, Fuqiang [1 ]
Wang, Jiawei [1 ,3 ]
Guo, Lidong [1 ]
Huang, Xinlei [1 ]
Zhang, Zhiguo [1 ,2 ]
Yang, Qiwei [1 ,2 ]
Yang, Yiwen [1 ,2 ]
Ren, Qilong [1 ,2 ]
Bao, Zongbi [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Chem & Biol Engn, Minist Educ, Key Lab Biomass Chem Engn, 38 Zheda Rd, Hangzhou 310027, Peoples R China
[2] Inst Zhejiang Univ Quzhou, 78 Jiuhua Blvd North, Quzhou 324000, Peoples R China
[3] Hangzhou Hangyang Co Ltd, Hangzhou 310014, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal-organic frameworks; Carbon dioxide; Methane; Nitrogen; Adsorption separation; Molecular sieving; CO2; CAPTURE; ADSORPTION; CAPACITY; SELECTIVITY; NETWORKS; AFFINITY; POLYMER; BINDING; GAS;
D O I
10.1016/j.seppur.2022.121031
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Carbon capture and sequestration are vital industrial processes that not only mitigate the greenhouse effect but also promote upgrading of low-quality natural gas. Porous adsorbent-based adsorption separation process appeals to be promising, while it still remains a great challenge to develop adsorbents with high adsorption uptake and selectivity of CO2 as well as high working capacity in practical applications. In this work, a group of gallatebased metal-organic frameworks with aperture size of 3.52 to 3.65 angstrom were reported for molecular sieving of CO2 from N-2 and CH4. Remarkably, Mg-gallate exhibited a record-high uptake of CO2 (5.05 mmol g(-1)) among all reported molecular sieving adsorbents combined with ultrahigh uptake ratio of CO2/CH4 (29.7) and CO2/N-2 (84.2) at 1 bar and 298 K. Multiple O-H center dot center dot center dot C and O center dot center dot center dot H-O interactions afford dense packing of CO2 molecules in the framework structure with a density up to 1.06 g cm(-3) on Mg-gallate, verified by density function theory calculations. Experimental breakthrough experiments confirmed the superb separation performance of flue gas and natural gas over a wide range of temperature. Robust structure and cycling stability along with facile scaleup synthesis method further offer great potential of M-gallate in industrial applications.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Carbon dioxide capture in diamine-appended metal-organic frameworks
    Siegelman, Rebecca
    Milner, Phillip
    Martell, Jeffrey
    Kim, Eugene
    Gonzalez, Miguel Carlos
    Forse, Alexander
    Runcevski, Tomce
    Mason, Jarad
    McDonald, Thomas
    Reimer, Jeffrey
    Long, Jeffrey
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [22] Multivariate metal-organic frameworks for carbon dioxide capture in the presence of water
    Yaghi, Omar M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [23] Carbon dioxide capture in diamine-appended metal-organic frameworks
    Siegelman, Rebecca
    Milner, Phillip
    Martell, Jeffrey
    Kim, Eugene
    Forse, Alexander
    Lee, Jung-Hoon
    McDonald, Thomas
    Mason, Jarad
    Oktawiec, Julia
    Gonzalez, Miguel
    Runcevski, Tomce
    Gygi, David
    Dinakar, Bhavish
    Porter-Zasada, Leo
    Weston, Simon
    Neaton, Jeffrey
    Reimer, Jeffrey
    Long, Jeffrey
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [24] Multivariate metal-organic frameworks with significant enhancement in carbon dioxide capture
    Deng, Hexiang
    Yaghi, Omar M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [25] Research Progress on Improving the Capture of Carbon Dioxide by Metal-Organic Frameworks
    Sun Z.
    Xue C.
    Song L.
    Qiu S.
    Chu H.
    Xia Y.
    Sun L.
    Cailiao Daobao/Materials Review, 2019, 33 (02): : 541 - 549
  • [26] Carbon dioxide capture in amine-functionalized metal-organic frameworks
    D'Alessandro, Deanna M.
    Demessence, Aude
    Long, Jeffrey R.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [27] Carbon dioxide capture by metal organic frameworks
    Saha, Subhadeep
    Chandra, Suman
    Garai, Bikash
    Banerjee, Rahul
    INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY, 2012, 51 (9-10): : 1223 - 1230
  • [28] Metal–organic frameworks for carbon dioxide capture
    Claudio Pettinari
    Alessia Tombesi
    MRS Energy & Sustainability, 2020, 7
  • [29] Bimetallic Copper-Cerium-Based Metal-Organic Frameworks for Selective Carbon Dioxide Capture
    Jampaiah, Deshetti
    Shah, Daksh
    Chalkidis, Anastasios
    Saini, Pallavi
    Babarao, Ravichandar
    Arandiyan, Hamidreza
    Bhargava, Suresh K.
    LANGMUIR, 2024, 40 (18) : 9732 - 9740
  • [30] Synthesis of metal-organic frameworks for carbon capture
    Cosio, Mario
    Fordham, Stephen
    Zhou, Hongcai
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251