A computational geometry approach for linear and non linear discriminant analysis

被引:0
|
作者
Ragozini, G [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Stat, I-80126 Naples, Italy
关键词
discriminant analysis; non linear structure; Voronoi tessellation;
D O I
10.1007/s001800050042
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A geometric discriminant criterion is a rule that allows to assign a new observation to preexisting groups. In this paper we propose a new method that works for data sets in two and three dimensions. It is totally data driven, without any model or density function assumptions, unlike usual the parametric approaches. In order to set up the procedure we exploit the geometrical properties of the Voronoi tessellation. The proposed discriminant analysis induces a space partition, that allows to deal efficiently with non linearly separable or non convex population structures. We analize the computational cost of the proposed procedure and the topological conditions concerning the group-conditional density functions that optimize the procedure performance. Because of its geometric properties, the method can be also usefully applied in statistical pattern recognition.
引用
收藏
页码:115 / 125
页数:11
相关论文
共 50 条
  • [31] Linear Discriminant Analysis for Signatures
    Huh, Seungil
    Lee, Donghun
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (12): : 1990 - 1996
  • [32] Transferable Linear Discriminant Analysis
    Han, Na
    Wu, Jigang
    Fang, Xiaozhao
    Wen, Jie
    Zhan, Shanhua
    Xie, Shengli
    Li, Xuelong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (12) : 5630 - 5638
  • [33] Modified linear discriminant analysis
    Chen, SC
    Li, DH
    PATTERN RECOGNITION, 2005, 38 (03) : 441 - 443
  • [34] Linear Discriminant Analysis and Transvariation
    Angela Montanari
    Journal of Classification, 2004, 21 : 71 - 88
  • [35] COMPUTATIONAL GEOMETRY OF LINEAR THRESHOLD FUNCTIONS
    ABELSON, H
    INFORMATION AND CONTROL, 1977, 34 (01): : 66 - 92
  • [36] Separable linear discriminant analysis
    Zhao, Jianhua
    Yu, Philip L. H.
    Shi, Lei
    Li, Shulan
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (12) : 4290 - 4300
  • [37] Multiblock Linear Discriminant Analysis
    Casin, Philippe
    JOURNAL OF THE SFDS, 2015, 156 (04): : 1 - 20
  • [38] Neighborhood linear discriminant analysis
    Zhu, Fa
    Gao, Junbin
    Yang, Jian
    Ye, Ning
    PATTERN RECOGNITION, 2022, 123
  • [39] Laplacian Linear Discriminant Analysis Approach to Unsupervised Feature Selection
    Niijima, Satoshi
    Okuno, Yasushi
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2009, 6 (04) : 605 - 614
  • [40] Using Multiple Discriminant Analysis approach for linear text segmentation
    Zhu, JB
    Ye, N
    Chang, XZ
    Chen, WL
    Tsou, BK
    NATURAL LANGUAGE PROCESSING - IJCNLP 2005, PROCEEDINGS, 2005, 3651 : 292 - 301