On the cardinality of S(n)-Spaces

被引:2
|
作者
Osipov, Alexander V. [1 ]
机构
[1] Ural Fed Univ, Krasovskii Inst Math & Mech, Ekaterinburg, Russia
关键词
54A25; 54D10; 54D25; Cardinal function; S(n)-space; theta(n)-closure; S(n)-theta-closed; quasi-Menger number;
D O I
10.2989/16073606.2019.1672112
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, for a topological space X and any positive integer n, we define the cardinal functions sL(theta(n)) (X), theta(n)-quasi-Menger number qM(theta(n)) (X) and s(n)-quasi-Menger number qM(s(n)) (X). We prove the following statements: For every S(2n)-space X, |X| <= 2(sL) theta (n) (X) kappa(theta (n)) (X).For every S(2n)-space X, |X| <= 2(qM) theta (n) (X) kappa(theta (n)) (X).For every S(2n)-space X, |X| <= 2(qM) s (n) (X) kappa(theta (n)) (X).Similar results are stated for S(2n - 1)-spaces.
引用
收藏
页码:121 / 128
页数:8
相关论文
共 50 条
  • [41] On cardinality bounds for homogeneous spaces and the Gκ-modification of a space
    Carlson, N. A.
    Porter, J. R.
    Ridderbos, G. J.
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (13) : 2932 - 2941
  • [42] Cardinality of the Ellis semigroup on compact metric countable spaces
    Garcia-Ferreira, S.
    Rodriguez-Lopez, Y.
    Uzcategui, C.
    SEMIGROUP FORUM, 2018, 97 (01) : 162 - 176
  • [43] Cardinality of the Ellis semigroup on compact metric countable spaces
    S. García-Ferreira
    Y. Rodríguez-López
    C. Uzcátegui
    Semigroup Forum, 2018, 97 : 162 - 176
  • [44] On the cardinality of Hausdorff spaces and Pol-Sapiroyskii technique
    Ramirez-Paramo, Alejandro
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2005, 46 (01): : 131 - 135
  • [45] CARDINALITY BOUNDS OF H-SETS IN URYSOHN SPACES
    McNeill, Daniel K.
    TOPOLOGY PROCEEDINGS, VOL 36, 2010, 36 : 123 - 129
  • [46] The relations between matroids of arbitrary cardinality and independence spaces
    Hua Mao
    Hui Liu
    ARMENIAN JOURNAL OF MATHEMATICS, 2013, 5 (01): : 26 - 33
  • [47] The cardinality of compact spaces satisfying the countable chain condition
    Usuba, Toshimichi
    TOPOLOGY AND ITS APPLICATIONS, 2014, 174 : 41 - 55
  • [48] ON A THEOREM OF DEGROOT ABOUT CARDINALITY OF TOPOLOGICAL-SPACES
    STAVROVA, DN
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1992, 45 (11): : 5 - 6
  • [49] ON CARDINALITY OF H-BASES FOR N
    MOSER, L
    POUNDER, JR
    RIDDELL, J
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1969, 44 (175P): : 397 - &
  • [50] FORMULA FOR CARDINALITY OF NUMBERS MODULO N
    BRAKEMEIER, W
    MONATSHEFTE FUR MATHEMATIK, 1978, 85 (04): : 277 - 282