Constructing CuNi dual active sites on ZnIn2S4 for highly photocatalytic hydrogen evolution

被引:51
|
作者
Jin, Jingyi [1 ]
Cao, Yanren [1 ]
Feng, Ting [1 ]
Li, Yanxin [1 ]
Wang, Ruonan [1 ]
Zhao, Kaili [1 ]
Wang, Wei [1 ,2 ]
Dong, Bohua [1 ]
Cao, Lixin [1 ]
机构
[1] Ocean Univ China, Sch Mat Sci & Engn, 238 Songling Rd, Qingdao 266100, Peoples R China
[2] Aramco Serv Co, Armco Res Ctr Boston, Cambridge, MA 02139 USA
基金
中国国家自然科学基金;
关键词
HIGH-EFFICIENCY; GENERATION; REDUCTION; WATER; NI; DEGRADATION; FABRICATION; COMPOSITES; SEPARATION; NANOTUBES;
D O I
10.1039/d0cy02371j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Noble metal Pt as an efficient cocatalyst is widely utilized in the photocatalytic hydrogen (H-2) evolution field while its application is restricted by high price and scarcity. Herein, a feasible strategy for depositing a non-noble bimetallic cocatalyst on a ZnIn2S4 surface has been put forward. The low-cost and earth-abundant CuNi bimetal cocatalyst was deposited via a simple one-step photoreduction method. In this novel photocatalytic system, CuNi bimetal served as dual active sites which can inhibit the recombination of charge carriers on ZnIn2S4. Compared with single Cu or Ni deposited ZnIn2S4 samples, CuNi bimetal decorated samples showed a significant enhancement in hydrogen evolution activity. Meanwhile, 12% Cu2Ni1-ZIS realized the highest hydrogen generation rate (7825 mu mol h(-1) g(-1), AQE = 30.19%, lambda > 420 nm). The enhanced photocatalytic performance can be attributed to the spillover effect of H atoms from Ni to Cu and the synergistic effect between the metals. This work provides a novel strategy for optimizing the H-2 evolution performance of a ZnIn2S4-based photocatalyst by utilizing a non-noble bimetallic cocatalyst as dual active sites.
引用
收藏
页码:2753 / 2761
页数:9
相关论文
共 50 条
  • [31] A comparative study on photocatalytic hydrogen evolution activity of synthesis methods of CDs/ZnIn2S4 photocatalysts
    Lei, Kai
    Kou, Mingpu
    Ma, Zhaoyu
    Deng, Yu
    Ye, Liqun
    Kong, Yan
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2019, 574 : 105 - 114
  • [32] Surface Cu~+ modified ZnIn2S4 for promoted visible-light photocatalytic hydrogen evolution
    Wen Li Jia
    Wen Jing Li
    Hai Yang Yuan
    Xuefeng Wu
    Yuanwei Liu
    Sheng Dai
    Qilin Cheng
    Peng Fei Liu
    Hua Gui Yang
    Journal of Energy Chemistry, 2022, 74 (11) : 341 - 348
  • [33] Efficient photocatalytic hydrogen evolution of Z-scheme BiVO4/ZnIn2S4 4 /ZnIn 2 S 4 heterostructure driven by visible light
    Li, Liyang
    Zhang, Zhengying
    Fang, Dong
    Yang, Di
    INORGANIC CHEMISTRY COMMUNICATIONS, 2024, 169
  • [34] Ultrathin ZnIn2S4 nanosheets with active (110) facet exposure and efficient charge separation for cocatalyst free photocatalytic hydrogen evolution
    Shi, Xiaowei
    Mao, Liang
    Yang, Ping
    Zheng, Huajun
    Fujitsuka, Mamoru
    Zhang, Junying
    Majima, Tetsuro
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 265 (265)
  • [35] Rapid Microwave-Assisted Synthesis of ZnIn2S4 Nanosheets for Highly Efficient Photocatalytic Hydrogen Production
    Chang, Yu-Cheng
    Chiao, Yung-Chang
    Hsu, Po-Chun
    NANOMATERIALS, 2023, 13 (13)
  • [36] Ultrafast electron transfer at the ZnIn2S4/MoS2 S-scheme interface for photocatalytic hydrogen evolution
    Bhatt, Himanshu
    Patel, Mahammed Suleman
    Goswami, Tanmay
    Yadav, Dharmendra K.
    Patra, Atal Swathi
    Ghosh, Hirendra N.
    NANOSCALE, 2025, 17 (13) : 7908 - 7916
  • [37] Constructing Cu1-Ti dual sites for highly efficient photocatalytic hydrogen evolution
    Feng, Yajie
    Wang, Yang
    Wang, Kaiwen
    Ban, Chaogang
    Duan, Youyu
    Meng, Jiazhi
    Liu, Xue
    Ma, Jiangping
    Dai, Jiyan
    Yu, Danmei
    Wang, Cong
    Gan, Liyong
    Zhou, Xiaoyuan
    NANO ENERGY, 2022, 103
  • [38] Regulating the surface state of ZnIn2S4 by gamma-ray irradiation for enhanced photocatalytic hydrogen evolution
    Wang, Siyu
    Li, Peng
    Sheng, Lei
    Song, Lizhu
    Zang, Rui
    Liu, Shuaishuai
    Liu, Lequan
    Zhou, Wei
    CATALYSIS SCIENCE & TECHNOLOGY, 2022, 12 (03) : 927 - 934
  • [39] Surface Cu+ modified ZnIn2S4 for promoted visible-light photocatalytic hydrogen evolution
    Li Jia, Wen
    Li, Wen Jing
    Yuan, Hai Yang
    Wu, Xuefeng
    Liu, Yuanwei
    Dai, Sheng
    Cheng, Qilin
    Liu, Peng Fei
    Yang, Hua Gui
    JOURNAL OF ENERGY CHEMISTRY, 2022, 74 : 341 - 348
  • [40] Rational Photodeposition of Cobalt Phosphate on Flower-like ZnIn2S4 for Efficient Photocatalytic Hydrogen Evolution
    Wu, Yonghui
    Wang, Zhipeng
    Yan, Yuqing
    Wei, Yu
    Wang, Jun
    Shen, Yunsheng
    Yang, Kai
    Weng, Bo
    Lu, Kangqiang
    MOLECULES, 2024, 29 (02):