Pairwise classification as an ensemble technique

被引:0
|
作者
Fürnkranz, J [1 ]
机构
[1] Austrian Res Inst Artificial Intelligence, A-1010 Vienna, Austria
来源
MACHINE LEARNING: ECML 2002 | 2002年 / 2430卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we investigate the performance of pairwise (or round robin) classification, originally a technique for turning multi-class problems into two-class problems, as a general ensemble technique. In particular, we show that the use of round robin ensembles will also increase the classification performance of decision tree learners, even though they can directly handle multi-class problems. The performance gain is not as large as for bagging and boosting, but on the other hand round robin ensembles have a clearly defined semantics. Furthermore, we show that the advantage of pairwise classification over direct multi-class classification and one-against-all binarization increases with the number of classes, and that round robin ensembles form an interesting alternative for problems with ordered class values.
引用
收藏
页码:97 / 110
页数:14
相关论文
共 50 条
  • [21] Classification on pairwise proximity data
    Graepel, T
    Herbrich, R
    Bollmann-Sdorra, P
    Obermayer, K
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 11, 1999, 11 : 438 - 444
  • [22] Pairwise Difference Learning for Classification
    Belaid, Mohamed Karim
    Rabus, Maximilian
    Huellermeier, Eyke
    DISCOVERY SCIENCE, DS 2024, PT II, 2025, 15244 : 284 - 299
  • [23] New variants of pairwise classification
    Krzysko, Miroslaw
    Wolynski, Waldemar
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 199 (02) : 512 - 519
  • [24] Disambiguating Authors by Pairwise Classification
    林泉
    王波
    杜圆
    王雪至
    李玉华
    陈松灿
    TsinghuaScienceandTechnology, 2010, 15 (06) : 668 - 677
  • [25] Disambiguating authors by pairwise classification
    Lin Q.
    Wang B.
    Du Y.
    Wang X.
    Li Y.
    Chen S.
    Tsinghua Science and Technology, 2010, 15 (06) : 668 - 677
  • [26] Pairwise Facial Expression Classification
    Kyperountas, Marios
    Tefas, Anastasios
    Pitas, Ioannis
    2009 IEEE INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP 2009), 2009, : 90 - 93
  • [27] Analysis of Statistical Features for Bearing Fault Classification using Ensemble Technique
    Udmale, Sandeep S.
    Singh, Sanjay Kumar
    2019 10TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT), 2019,
  • [28] On the Use of a Cluster Ensemble Cloud Classification Technique in Satellite Precipitation Estimation
    Mahrooghy, Majid
    Younan, Nicolas H.
    Anantharaj, Valentine G.
    Aanstoos, James
    Yarahmadian, Shantia
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (05) : 1356 - 1363
  • [29] Multi-label Classification of Small Samples Using an Ensemble Technique
    Mahdavi-Shahri, Amirreza
    Karimian, Jamil
    Javadi, Azadeh
    Houshmand, Mahboobeh
    26TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2018), 2018, : 1708 - 1713
  • [30] Optimization assisted framework for thyroid detection and classification: A new ensemble technique
    Namdeo, Rajole Bhausaheb
    Janardan, Gond Vitthal
    GENE EXPRESSION PATTERNS, 2022, 45