A lightweight iterative error reconstruction network for infrared image super-resolution in smart grid

被引:14
|
作者
Chen, Lihui [1 ]
Tang, Rui [1 ]
Anisetti, Marco [2 ]
Yang, Xiaomin [1 ]
机构
[1] Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610064, Sichuan, Peoples R China
[2] Univ Milan, Dipartimento Informat DI, Via Celoria 18, I-20133 Milan, MI, Italy
基金
中国国家自然科学基金;
关键词
Convolutional neural networks; Deep learning; Smart grid; Infrared image super-resolution; ENHANCEMENT; DICTIONARY;
D O I
10.1016/j.scs.2020.102520
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Thermal infrared (IR) images are widely used in smart grids for numerous applications. These applications prefer high-resolution (HR) IR images since HR IR images benefit the performance. However, HR IR imaging devices are extremely expensive. To save the cost of upgrading imaging devices, an iterative error reconstruction network (IERN) is proposed to improve the resolution of IR images. We first achieve efficient dense connections based on linearly compressive skip links. Slightly sacrificing the performance, the efficient dense connections can mark-edly reduce the parameters and computations of the vanilla dense connections. Then, an iterative error recon-struction mechanism is proposed to boost the performance, which enables IERN to restore many more textures and edges. Specifically, an initial SR image, high-level features, and up-sampled features are obtained firstly. Secondly, a SR error image is acquired by reconstructing the errors between the initial high-level features and the back-projected features from the up-sampled features. Thirdly, a new SR image is obtained by adding the SR error image to the initial SR image. Iterating the above process, the final SR image is achieved when the number of iterations reaches to the iteration threshold. Experimental results reveal the superiority of the proposed method over state-of-the-art methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A sparse lightweight attention network for image super-resolution
    Hongao Zhang
    Jinsheng Fang
    Siyu Hu
    Kun Zeng
    The Visual Computer, 2024, 40 (2) : 1261 - 1272
  • [22] Lightweight subpixel sampling network for image super-resolution
    Hongfei Zeng
    Qiang Wu
    Jin Zhang
    Haojie Xia
    The Visual Computer, 2024, 40 : 3781 - 3793
  • [23] Lightweight Parallel Feedback Network for Image Super-Resolution
    Beibei Wang
    Changjun Liu
    Binyu Yan
    Xiaomin Yang
    Neural Processing Letters, 2023, 55 : 3225 - 3243
  • [24] A scalable attention network for lightweight image super-resolution
    Fang, Jinsheng
    Chen, Xinyu
    Zhao, Jianglong
    Zeng, Kun
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (08)
  • [25] A sparse lightweight attention network for image super-resolution
    Zhang, Hongao
    Fang, Jinsheng
    Hu, Siyu
    Zeng, Kun
    VISUAL COMPUTER, 2024, 40 (02): : 1261 - 1272
  • [26] Lightweight Parallel Feedback Network for Image Super-Resolution
    Wang, Beibei
    Liu, Changjun
    Yan, Binyu
    Yang, Xiaomin
    NEURAL PROCESSING LETTERS, 2023, 55 (03) : 3225 - 3243
  • [27] Lightweight Inverse Separable Residual Information Distillation Network for Image Super-Resolution Reconstruction
    Zhao X.
    Li X.
    Song Z.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2023, 36 (05): : 419 - 432
  • [28] Thermal Image Super-Resolution Based on Lightweight Dynamic Attention Network for Infrared Sensors
    Zhang, Haikun
    Hu, Yueli
    Yan, Ming
    SENSORS, 2023, 23 (21)
  • [29] Adaptive Regularization of Infrared Image Super-resolution Reconstruction
    Dai Shao-Sheng
    Xiang Hai-Yan
    Du Zhi-Hui
    Liu Jin-Song
    2014 INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND NETWORKING TECHNOLOGIES (ICCCNT, 2014,
  • [30] Preconditioned iterative methods for super-resolution image reconstruction with multisensors
    Ng, MK
    Sze, KN
    ADVANCED SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, AND IMPLEMENTATIONS X, 2000, 4116 : 396 - 405