Multivariate statistical approach to optimizing sustained-release tablet formulations containing diltiazem hydrochloride as a model highly water-soluble drug
被引:26
|
作者:
Kikuchi, Shingo
论文数: 0引用数: 0
h-index: 0
机构:
Hoshi Univ, Dept Pharmaceut, Shinagawa Ku, Tokyo 1428501, JapanHoshi Univ, Dept Pharmaceut, Shinagawa Ku, Tokyo 1428501, Japan
Kikuchi, Shingo
[1
]
Takayama, Kozo
论文数: 0引用数: 0
h-index: 0
机构:
Hoshi Univ, Dept Pharmaceut, Shinagawa Ku, Tokyo 1428501, JapanHoshi Univ, Dept Pharmaceut, Shinagawa Ku, Tokyo 1428501, Japan
Takayama, Kozo
[1
]
机构:
[1] Hoshi Univ, Dept Pharmaceut, Shinagawa Ku, Tokyo 1428501, Japan
A multivariate statistical technique was applied to designing a tablet for the sustained release over 24 h of diltiazenn hydrochloride, a model highly water-soluble drug. Tablets of a hydrophilic matrix composed of dextran derivatives and hypromellose were prepared. The formulations were optimized using a nonlinear-response surface method incorporating thin-plate spline interpolation (RSM-S). A bootstrap (BS) resampling method was used to estimate the confidence intervals of the optimal formulations. The response surfaces estimated by RSM-S visualized the effects of the formulation factors, and the optimal release profile for diltiazern was predicted quantitatively as a function of the quantities of the formulation factors, using RSM-S. The simultaneous optimal solutions and their confidence intervals were estimated using RSM-S and BS resampling. The results clearly indicate nonlinear relationships between the formulation factors and the response variables. The observed responses of the optimal preparation coincided well with the predicted responses. The optimal hydrophilic matrix tablet allowed almost zero-order release of diltiazern hydrochloride for 24 h. In conclusion, an oral sustained-release tablet formulation, active over a long period, was successfully optimized using RSM-S, and the reliability of the optimal solution was evaluated using BS resampling. (C) 2009 Elsevier B.V. All rights reserved.
机构:
Int Med Univ, Sch Pharm & Hlth Sci, Dept Pharmaceut Technol, Kuala Lumpur 57000, MalaysiaInt Med Univ, Sch Pharm & Hlth Sci, Dept Pharmaceut Technol, Kuala Lumpur 57000, Malaysia
Zeeshan, F.
Peh, K. K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sains Malaysia, Sch Pharmaceut Sci, Minden 11800, Penang, MalaysiaInt Med Univ, Sch Pharm & Hlth Sci, Dept Pharmaceut Technol, Kuala Lumpur 57000, Malaysia
Peh, K. K.
Tan, Y. T. F.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sains Malaysia, Sch Pharmaceut Sci, Minden 11800, Penang, MalaysiaInt Med Univ, Sch Pharm & Hlth Sci, Dept Pharmaceut Technol, Kuala Lumpur 57000, Malaysia