Dynamic coloring of graphs having no K5 minor

被引:8
|
作者
Kim, Younjin [1 ]
Lee, Sang June [2 ]
Oum, Sang-il [3 ,4 ]
机构
[1] Ewha Womans Univ, Dept Math, Seoul, South Korea
[2] Duksung Womens Univ, Dept Math, Seoul, South Korea
[3] Korea Adv Inst Sci & Technol, Dept Math Sci, Daejeon, South Korea
[4] KIAS, Sch Math, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Dynamic coloring; Minor-free graph; Four color theorem; Hadwiger's conjecture; LOCAL CHROMATIC NUMBER; CONJECTURE;
D O I
10.1016/j.dam.2016.01.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that every simple connected graph with no K5 minor admits a proper 4-coloring such that the neighborhood of each vertex v having more than one neighbor is not monochromatic, unless the graph is isomorphic to the cycle of length 5. This generalizes the result on planar graphs by 5.-J. Kim, W.J. Park and the second author [Discrete Appl. Math. 161 (2013) 2207-22121. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 89
页数:9
相关论文
共 50 条
  • [31] K5公寓
    Reiulf D.Ramstad
    Espen Surnevik
    Sunniva Neuenkirchen Rosenberg
    Anders TjФnneland
    中国建筑装饰装修, 2011, (02) : 34 - 41
  • [32] Graphs With 3n−6 Edges Not Containing A Subdivision Of K5
    Wolfgang Mader
    Combinatorica, 2005, 25 : 425 - 438
  • [33] Graphs with 3n-6 edges not containing a subdivision of K5
    Mader, W
    COMBINATORICA, 2005, 25 (04) : 425 - 438
  • [34] Linear list r-hued coloring of K4-minor free graphs
    Kong, Jiangxu
    Lai, Hong-Jian
    Xu, Murong
    ARS COMBINATORIA, 2019, 143 : 377 - 391
  • [35] On r-hued list coloring of K4(7)-minor free graphs
    Wei, Wenjuan
    Liu, Fengxia
    Xiong, Wei
    Lai, Hong-Jian
    DISCRETE APPLIED MATHEMATICS, 2022, 309 : 301 - 309
  • [36] Breaking the degeneracy barrier for coloring graphs with no Kt minor
    Norin, Sergey
    Postle, Luke
    Song, Zi-Xia
    ADVANCES IN MATHEMATICS, 2023, 422
  • [37] K4 or K5?
    不详
    BRITISH JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 1996, 103 (09): : R7 - R7
  • [38] (k, 1)-coloring of sparse graphs
    Borodin, O. V.
    Ivanova, A. O.
    Montassier, M.
    Raspaud, A.
    DISCRETE MATHEMATICS, 2012, 312 (06) : 1128 - 1135
  • [39] (k, j)-coloring of sparse graphs
    Borodin, O. V.
    Ivanova, A. O.
    Montassier, M.
    Raspaud, A.
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (17) : 1947 - 1953
  • [40] On δ(k)-coloring of generalized Petersen graphs
    Ellumkalayil, Merlin Thomas
    Naduvath, Sudev
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (01)