Polynomial extensions of modules with the quasi-Baer property

被引:1
|
作者
Dana, P. Amirzadeh [1 ]
Moussavi, A. [1 ]
机构
[1] Tarbiat Modares Univ, Dept Math Sci, Tehran, Iran
关键词
Baer rings and modules; Quasi-Baer rings and modules; p.q.-Baer modules; Extending and FI-extending modules; Endomorphism rings; Annihilators; Semicentral Idempotents;
D O I
10.1016/j.jalgebra.2019.09.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper it is shown that, for a module M over a ring R with S = End(R)(M), the endomorphism ring of the R[x]-module M[x] is isomorphic to a subring of S[[x]]. Also the endomorphism ring of the Rp[x]]-module M[[x]]( )is isomorphic to S[[x]]. As a consequence, we show that for a module M-R and an arbitrary nonempty set of not necessarily commuting indeterminates X, M-R is quasi-Baer if and only if M[X](R[x] )is quasi-Baer if and only if M[[X]](R[[x]]) is quasi-Baer if and only if M[x](R[x]) is quasi-Baer if and only if M[[x]](R[[x]]) is quasi-Baer. Moreover, a module M-R with IFP, is Baer if and only if M[x](R[x]) is Baer if and only if M[[x]](R)([[)(x)(]]) is Baer. It is also shown that, when MR is a finitely generated module, and every semicentral idempotent in S is central, then M[[X]](R[[X]]) is endo-p.q.-Baer if and only if M[[x]](R[[x]]) is endo-p.q.-Baer if and only if M-R is endo-p.q.-Baer and every countable family of fully invariant direct summand of M has a generalized countable join. Our results extend several existing results. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:230 / 248
页数:19
相关论文
共 50 条
  • [31] ON SKEW QUASI-BAER RINGS
    Habibi, M.
    Moussavi, A.
    Manaviyat, R.
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (10) : 3637 - 3648
  • [32] Principally quasi-Baer rings
    Birkenmeier, GF
    Kim, JY
    Park, JK
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (02) : 639 - 660
  • [33] Baer and quasi-Baer annihilator conditions for nearrings and rings
    Birkenmeier, Gary F.
    Kilic, Nayil
    Mutlu, Figen Takil
    Tastan, Edanur
    Tercan, Adnan
    Yasar, Ramazan
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (03) : 1063 - 1070
  • [34] STRONGLY BAER AND STRONGLY QUASI-BAER SEMIRINGS AND GENERALIZATIONS
    Gupta, V.
    Chaudhari, J. N.
    Kumar, P.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2009, 2 (04) : 579 - 591
  • [35] Rings which are Baer or quasi-Baer modulo a radical
    Ryan, C. Edward
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (10) : 4557 - 4564
  • [36] A note on principally quasi-Baer rings
    Liu, ZK
    COMMUNICATIONS IN ALGEBRA, 2002, 30 (08) : 3885 - 3890
  • [37] Weakly principally quasi-Baer rings
    Majidinya, A.
    Moussavi, A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (01)
  • [38] Quasi-Baer module hulls and their examples
    Park, Jae Keol
    Rizvi, S. Tariq
    CATEGORICAL, HOMOLOGICAL AND COMBINATORIAL METHODS IN ALGEBRA, 2020, 751 : 271 - 301
  • [39] Group Actions on Quasi-Baer Rings
    Jin, Hai Lan
    Doh, Jaekyung
    Park, Jae Keol
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2009, 52 (04): : 564 - 582
  • [40] Quasi-Baer module hulls and applications
    Lee, Gangyong
    Park, Jae Keol
    Rizvi, S. Tariq
    Roman, Cosmin S.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2018, 222 (09) : 2427 - 2455