Existence of infinitely many spike solutions for a critical Henon type biharmonic equation

被引:0
|
作者
Zhang, Yajing [1 ]
Chen, Xinfu [2 ]
Hao, Jianghao [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
[2] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
Bi-harmonic operator; Henon problem; Critical Sobolev exponents; Spike solution; INVARIANT 4TH-ORDER EQUATION; GROUND-STATE SOLUTIONS; CRITICAL GROWTH; ASYMPTOTIC-BEHAVIOR; POSITIVE SOLUTIONS; NONRADIAL SOLUTIONS; SOBOLEV INEQUALITY; ELLIPTIC-EQUATIONS; PEAK SOLUTIONS; EXPONENTS;
D O I
10.1016/j.jmaa.2016.04.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Following the idea of Wei and Yan [32], with new ingredients to take care of the critical dimension n = 5, we construct infinitely many solutions of the biharmonic equation Delta(2)v = vertical bar x vertical bar alpha v(n+4/n-4) the unit ball of R-n (n >= 5, alpha > 0) with the Navier conditions v = Delta v = 0 on the boundary. (c) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:844 / 861
页数:18
相关论文
共 50 条