Waste-to-energy residues - The search for beneficial uses

被引:0
|
作者
Millrath, K [1 ]
Roethel, FJ [1 ]
Kargbo, DM [1 ]
机构
[1] Columbia Univ, Earth Engn Ctr, New York, NY 10027 USA
关键词
waste-to-energy; WTE; MSW combustion; beneficial use; bottom ash; fly ash; combined ash;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In the U.S., about 28.5 million tons of municipal solid waste are combusted annually in waste-to-energy facilities that generate 25-30% of ash by weight of the MSW feed. Since some residues were found to contain high levels of lead and cadmium prior to the 1990s, they were commonly associated with environmental pollution. However, for the last years nearly all ash samples have been tested non-hazardous. Research on the beneficial use of combustion residue has been conducted for the past few decades yet the actual ash reuse rate in the U.S. has remained close to 10%. Currently most of the ash is landfilled at considerable cost to the waste-to-energy industry. A consortium of researchers at Columbia University, the State University of New York at Stony Brook, Temple University, and other institutions seeks to develop and to advance the beneficial uses of combustion residues, such as in construction materials or remediation of contaminated abandoned mines and brownfields. This paper describes the search for beneficial use applications and provides an overview of the first year of this consortium.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 50 条
  • [31] Waste-to-energy jet fuel Flying on waste
    不详
    PROFESSIONAL ENGINEERING, 2010, 23 (03) : 40 - 40
  • [32] Waste Management in Greece and Potential for Waste-to-Energy
    Kalogirou, Efstratios
    Bourtsalas, Athanasios
    Klados, Manolis
    Themelis, Nickolas J.
    Green Energy and Technology, 2012, 55 : 219 - 235
  • [33] Renewable Waste-to-Energy in Southeast Asia: Status, Challenges, Opportunities, and Selection of Waste-to-Energy Technologies
    Tun, Maw Maw
    Palacky, Petr
    Juchelkova, Dagmar
    Sitar, Vladislav
    APPLIED SCIENCES-BASEL, 2020, 10 (20): : 1 - 28
  • [34] Environmental assessment of a waste-to-energy practice: The pyrolysis of agro-industrial biomass residues
    Cusenza, Maria Anna
    Longo, Sonia
    Cellura, Maurizio
    Guarino, Francesco
    Messineo, Antonio
    Mistretta, Marina
    Volpe, Maurizio
    SUSTAINABLE PRODUCTION AND CONSUMPTION, 2021, 28 : 866 - 876
  • [35] WASTE-TO-ENERGY AND THE SOLID WASTE MANAGEMENT HIERARCHY
    O'Brien, Jeremy K.
    16TH ANNUAL NORTH AMERICAN WASTER TO ENERGY CONFERENCE NAWTEC16, 2008, : 199 - 203
  • [36] The Zero Waste utopia and the role of waste-to-energy
    Quicker, Peter
    Consonni, Stefano
    Grosso, Mario
    WASTE MANAGEMENT & RESEARCH, 2020, 38 (05) : 481 - 484
  • [37] Examining waste-to-energy technology potential through the pilot project of Bantargebang Waste-to-Energy Power Plant
    Agatha, Natasya Putri
    Harvan, Akhmad Audi
    Prasetya, Fierza Rizky
    7TH ENVIRONMENTAL TECHNOLOGY AND MANAGEMENT CONFERENCE, ETMC 2023, 2024, 485
  • [38] Towards a sustainable waste-to-energy pathway to pequi biomass residues: Biochar, syngas, and biodiesel analysis
    Ghesti G.F.
    Silveira E.A.
    Guimarães M.G.
    Evaristo R.B.W.
    Costa M.
    Waste Management, 2022, 143 : 144 - 156
  • [39] Combining anaerobic digestion and waste-to-energy
    Ostrem, KM
    Millrath, K
    Themelis, NJ
    NAWTEC12: PROCEEDINGS OF THE 12TH ANNUAL NORTH AMERICAN WASTE TO ENERGY CONFERENCE, 2004, : 265 - 271
  • [40] Integrating waste-to-energy in Copenhagen, Denmark
    Hulgaard, Tore
    Sondergaard, Inger
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-CIVIL ENGINEERING, 2018, 171 (05) : 3 - 10