Isochronicity for a class of reversible systems

被引:5
|
作者
Wu, Kuilin [1 ]
Zhao, Yulin [1 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
关键词
Period functions; Isochronous centers; Reversible systems; POLYNOMIAL HAMILTONIAN-SYSTEMS; CRITICAL PERIODS; VECTOR-FIELDS; CENTERS;
D O I
10.1016/j.jmaa.2009.10.054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the relation between isochronicity and first integral for a class of reversible systems: (x) over dot = -U(x)y, (y) over dot = f(x, y). which associates to the first integral of the form H(x, y) = F(x)y(2) + G(x). Two necessary and sufficient conditions are given to characterize isochronicity for these systems. Moreover. we apply these results to show that there exists a class of polynomial reversible systems of degree n with isochronous center for any n. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:300 / 307
页数:8
相关论文
共 50 条
  • [31] Isochronicity conditions for some planar polynomial systems
    Boussaada, Islam
    Chouikha, A. Raouf
    Strelcyn, Jean-Marie
    BULLETIN DES SCIENCES MATHEMATIQUES, 2011, 135 (01): : 89 - 112
  • [32] On the order of strong isochronicity of plane dynamical systems
    Amel'kin, V. V.
    DIFFERENTIAL EQUATIONS, 2007, 43 (10) : 1464 - 1467
  • [33] A class of reversible cubic systems with an isochronous center
    Cairó, L
    Chavarriga, J
    Giné, J
    Llibre, J
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1999, 38 (11-12) : 39 - 53
  • [34] Bifurcation and Isochronicity at Infinity in a Class of Cubic Polynomial Vector Fields
    Qin-long Wang
    Yi-rong Liu
    Acta Mathematicae Applicatae Sinica, English Series, 2007, 23 : 451 - 466
  • [35] Bifurcation and isochronicity at infinity in a class of cubic polynomial vector fields
    Wang, Qin-long
    Liu, Yi-rong
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2007, 23 (03): : 451 - 466
  • [36] Bifurcation and Isochronicity at Infinity in a Class of Cubic Polynomial Vector Fields
    Qin-long Wang Department of Information and Mathematics
    Acta Mathematicae Applicatae Sinica, 2007, (03) : 451 - 466
  • [37] Isochronicity conditions for some planar polynomial systems II
    Bardet, Magali
    Boussaada, Islam
    Chouikha, A. Raouf
    Strelcyn, Jean-Marie
    BULLETIN DES SCIENCES MATHEMATIQUES, 2011, 135 (02): : 230 - 249
  • [38] On Isochronicity
    D. V. Treschev
    Proceedings of the Steklov Institute of Mathematics, 2023, 322 : 198 - 223
  • [39] A Random Dynamical Systems Perspective on Isochronicity for Stochastic Oscillations
    Maximilian Engel
    Christian Kuehn
    Communications in Mathematical Physics, 2021, 386 : 1603 - 1641
  • [40] THE JACOBI LAST MULTIPLIER AND ISOCHRONICITY OF LIENARD TYPE SYSTEMS
    Guha, Partha
    Choudhury, A. Ghose
    REVIEWS IN MATHEMATICAL PHYSICS, 2013, 25 (06)