Asymptotic solutions of the nonlocal nonlinear Schrodinger equation in the limit of small dispersion

被引:6
|
作者
Matsuno, Y [1 ]
机构
[1] Yamaguchi Univ, Fac Engn, Dept Appl Sci, Ube, Yamaguchi 7558611, Japan
关键词
nonlocal NLS equation; small dispersion limit; modulation equation;
D O I
10.1016/S0375-9601(03)00123-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A method is developed for solving the initial value problem of the nonlocal nonlinear Schrodinger (NLS) equation in the limit of small dispersion. Whitham's modulation theory is used to characterize the main feature of the solution in terms of the single-phase periodic solution of the nonlocal NLS equation with the slowly varying wave parameters. The modulation equations for these parameters are derived by averaging the local conservation laws. A novel feature of the modulation equations is that they can be decoupled into the form of the integrable Hopf equation. An explicit example of the solution is exhibited for a step initial condition. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:83 / 89
页数:7
相关论文
共 50 条
  • [31] Life span of solutions to a nonlocal in time nonlinear fractional Schrodinger equation
    Kirane, M.
    Nabti, A.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 1473 - 1482
  • [32] Physically significant nonlocal nonlinear Schrodinger equation and its soliton solutions
    Yang, Jianke
    PHYSICAL REVIEW E, 2018, 98 (04)
  • [33] Rational solutions for the nonlocal sixth-order nonlinear Schrodinger equation
    Liu, De-Yin
    Sun, Wen-Rong
    APPLIED MATHEMATICS LETTERS, 2018, 84 : 63 - 69
  • [34] Breather similariton solutions of the nonlocal nonlinear Schrodinger equation with varying coefficients
    Wang, Yan
    Wang, Nan
    Zhang, Ruifang
    OPTIK, 2022, 270
  • [35] Soliton solutions to the nonlocal non-isospectral nonlinear Schrodinger equation
    Feng, Wei
    Zhao, Song-Lin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (25):
  • [36] Breather solutions of the nonlocal nonlinear self-focusing Schrodinger equation
    Zhong, Wei-Ping
    Yang, Zhengping
    Belic, Milivoj
    Zhong, WenYe
    PHYSICS LETTERS A, 2021, 395
  • [37] Collapse in the nonlocal nonlinear Schrodinger equation
    Maucher, F.
    Skupin, S.
    Krolikowski, W.
    NONLINEARITY, 2011, 24 (07) : 1987 - 2001
  • [38] Integrable Nonlocal Nonlinear Schrodinger Equation
    Ablowitz, Mark J.
    Musslimani, Ziad H.
    PHYSICAL REVIEW LETTERS, 2013, 110 (06)
  • [39] On asymptotic nonlocal symmetry of nonlinear Schrodinger equations
    Zachary, WW
    Shtelen, VM
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 1998, 5 (04) : 417 - 437
  • [40] Solutions for a Schrodinger equation with a nonlocal term
    Lenzi, E. K.
    de Oliveira, B. F.
    da Silva, L. R.
    Evangelista, L. R.
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (03)