LINEAR NON-AUTONOMOUS CAUCHY PROBLEMS AND EVOLUTION SEMIGROUPS

被引:0
|
作者
Neidhardt, Hagen [1 ]
Zagrebnov, Valentin A. [2 ,3 ]
机构
[1] WIAS Berlin, D-10117 Berlin, Germany
[2] Univ Aix Marseille 2, F-13288 Marseille 9, France
[3] Ctr Phys Theor, UMR 6207, F-13288 Marseille 9, France
关键词
DIFFERENTIAL-EQUATIONS; BANACH-SPACES; SCATTERING-THEORY; HYPERBOLIC-TYPE; OPERATORS; THEOREM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is devoted to the problem of existence of propagators for an abstract linear non-autonomous evolution Cauchy problem of hyperbolic type in separable Banach spaces. The problem is solved using the so-called evolution semigroup approach which reduces the existence problem for propagators to a perturbation problem of semigroup generators. The results are specified to abstract linear non-autonomous evolution equations in Hilbert spaces where the assumption is made that the domains of the quadratic forms associated with the generators are independent of time. Finally, these results are applied to time-dependent Schrodinger operators with moving point interactions in 1D.
引用
收藏
页码:289 / 340
页数:52
相关论文
共 50 条
  • [21] On non-autonomous evolutionary problems
    Rainer Picard
    Sascha Trostorff
    Marcus Waurick
    Maria Wehowski
    Journal of Evolution Equations, 2013, 13 : 751 - 776
  • [22] On non-autonomous evolutionary problems
    Picard, Rainer
    Trostorff, Sascha
    Waurick, Marcus
    Wehowski, Maria
    JOURNAL OF EVOLUTION EQUATIONS, 2013, 13 (04) : 751 - 776
  • [23] NON-AUTONOMOUS IMPULSIVE CAUCHY PROBLEMS OF PARABOLIC TYPE INVOLVING NONLOCAL INITIAL CONDITIONS
    Wang, Rong-Nian
    Ezzinbi, Khalil
    Zhu, Peng-Xian
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2014, 26 (02) : 275 - 299
  • [24] Hyers-Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems
    Zada, Akbar
    Shah, Omar
    Shah, Rahim
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 271 : 512 - 518
  • [25] Uniform exponential stability for discrete non-autonomous systems via discrete evolution semigroups
    Buse, Constantin
    Khan, Aftab
    Rahmat, Gul
    Tabassum, Afshan
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2014, 57 (02): : 193 - 205
  • [26] The Cauchy problem for non-autonomous nonlinear Schrodinger equations
    Pang, PYH
    Tang, HY
    Wang, YD
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (04): : 522 - 538
  • [27] Kato’s Theorem on the Integration of Non-Autonomous Linear Evolution Equations
    Jochen Schmid
    Marcel Griesemer
    Mathematical Physics, Analysis and Geometry, 2014, 17 : 265 - 271
  • [28] Kato's Theorem on the Integration of Non-Autonomous Linear Evolution Equations
    Schmid, Jochen
    Griesemer, Marcel
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2014, 17 (3-4) : 265 - 271
  • [29] Spectral and stability questions concerning evolution of non-autonomous linear systems
    Nerurkar, MG
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 3926 - 3931
  • [30] Solvability of initial boundary value problems for non-autonomous evolution equations
    S. G. Pyatkov
    Journal of Evolution Equations, 2020, 20 : 39 - 58