LINEAR NON-AUTONOMOUS CAUCHY PROBLEMS AND EVOLUTION SEMIGROUPS

被引:0
|
作者
Neidhardt, Hagen [1 ]
Zagrebnov, Valentin A. [2 ,3 ]
机构
[1] WIAS Berlin, D-10117 Berlin, Germany
[2] Univ Aix Marseille 2, F-13288 Marseille 9, France
[3] Ctr Phys Theor, UMR 6207, F-13288 Marseille 9, France
关键词
DIFFERENTIAL-EQUATIONS; BANACH-SPACES; SCATTERING-THEORY; HYPERBOLIC-TYPE; OPERATORS; THEOREM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is devoted to the problem of existence of propagators for an abstract linear non-autonomous evolution Cauchy problem of hyperbolic type in separable Banach spaces. The problem is solved using the so-called evolution semigroup approach which reduces the existence problem for propagators to a perturbation problem of semigroup generators. The results are specified to abstract linear non-autonomous evolution equations in Hilbert spaces where the assumption is made that the domains of the quadratic forms associated with the generators are independent of time. Finally, these results are applied to time-dependent Schrodinger operators with moving point interactions in 1D.
引用
收藏
页码:289 / 340
页数:52
相关论文
共 50 条
  • [1] Non-autonomous Cauchy problem for evolution equations
    Couchouron, JF
    POTENTIAL ANALYSIS, 2000, 13 (03) : 213 - 248
  • [2] Non-autonomous stochastic Cauchy problems in Banach spaces
    Veraar, Mark
    Zimmerschied, Jan
    STUDIA MATHEMATICA, 2008, 185 (01) : 1 - 34
  • [3] Cauchy problem for fractional non-autonomous evolution equations
    Pengyu Chen
    Xuping Zhang
    Yongxiang Li
    Banach Journal of Mathematical Analysis, 2020, 14 : 559 - 584
  • [4] Cauchy problem for fractional non-autonomous evolution equations
    Chen, Pengyu
    Zhang, Xuping
    Li, Yongxiang
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 14 (02) : 559 - 584
  • [5] Cauchy problem for non-autonomous fractional evolution equations
    Jia Wei He
    Yong Zhou
    Fractional Calculus and Applied Analysis, 2022, 25 : 2241 - 2274
  • [6] Cauchy problem for non-autonomous fractional evolution equations
    He, Jia Wei
    Zhou, Yong
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (06) : 2241 - 2274
  • [7] Maximal regularity for second order non-autonomous Cauchy problems
    Batty, Charles J. K.
    Chill, Ralph
    Srivastava, Sachi
    STUDIA MATHEMATICA, 2008, 189 (03) : 205 - 223
  • [8] Stability and Local Attractivity for Non-autonomous Boundary Cauchy Problems
    Jerroudi, Amine
    Moussi, Mohammed
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
  • [9] Wellposedness and asymptotic behaviour of non-autonomous boundary Cauchy problems
    Boulite, S.
    Maniar, L.
    Moussi, M.
    FORUM MATHEMATICUM, 2006, 18 (04) : 611 - 638
  • [10] Non-autonomous fractional Cauchy problems with almost sectorial operators
    He, Jia Wei
    Zhou, Yong
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 191