Improvements of nitrogen removal and electricity generation in microbial fuel cell-constructed wetland with extra corncob for carbon- limited wastewater treatment

被引:42
|
作者
Tao, Mengni [1 ]
Jing, Zhaoqian [1 ]
Tao, Zhengkai [1 ]
Luo, Hui [1 ]
Zuo, Simin [1 ]
机构
[1] Nanjing Forestry Univ, Coll Civil Engn, Nanjing 210037, Peoples R China
关键词
Carbon-limited wastewater; Corncob addition; Alkali pretreatment; Nitrogen removal; Electricity generation; POLLUTANTS REMOVAL; COMMUNITY; BIOMASS; DENITRIFICATION; DEGRADATION; PRETREATMENT; ENHANCEMENT; PERFORMANCE; CONVERSION; STRAW;
D O I
10.1016/j.jclepro.2021.126639
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Nitrogen residues in effluent from municipal wastewater treatment deteriorate aquatic ecosystem, and the common method is to add external carbon sources. Considering the low cost and easy availability, agricultural biomasses are often applied as the external carbon sources for carbon-limited wastewater treatment. This research estimated the feasibility of adding agricultural wastes to simultaneously enhance nitrogen removal and bioelectricity generation in microbial fuel cell-constructed wetland (MFC-CW), and the results were compared to those in MFC. Different agricultural wastes (corncob, straw, rice husk) were compared, and corncob showed a higher carbon release ability. The results revealed that the carbon release of corncob was a diffusion process, and fitted the second- order kinetics with the highest released chemical oxygen demand (COD) of 47.6 mg.(g.L)(-1). Corncob addition significantly enhanced the nutrients removal in MFC-CW with original influent COD of 22 mg L-1, and the maximum total nitrogen (TN), nitrate nitrogen (NO3--N), ammonia nitrogen (NH4+-N) removals were 86.6 +/- 1.6%, 97.2 +/- 0.3%, 73.1 +/- 2.8%, respectively. Besides, the bioelectricity generation performance was also promoted with the maximum voltage and power density of 340 mV and 23.5 mW/m(3), whereas the internal resistance slightly increased. The findings provide an economic way for nitrogen removal, energy recovery and agricultural wastes management by MFC-CW when treating carbon-limited wastewater. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Accumulation of sulfonamide resistance genes and bacterial community function prediction in microbial fuel cell-constructed wetland treating pharmaceutical wastewater
    Li, Hua
    Cai, Yun
    Gu, Zuli
    Yang, Yu-Li
    Zhang, Shuai
    Yang, Xiao-Li
    Song, Hai-Liang
    CHEMOSPHERE, 2020, 248
  • [42] Constructed wetland-microbial fuel cells enhanced with iron carbon fillers for ciprofloxacin wastewater treatment and power generation
    Dai, Meixue
    Wu, Yiming
    Wang, Jie
    Lv, Zhe
    Li, Fei
    Zhang, Yujia
    Kong, Qiang
    CHEMOSPHERE, 2022, 305
  • [43] Substrate removal and electricity generation in a membrane-less microbial fuel cell for biological treatment of wastewater
    Wang, Haiping
    Jiang, Sunny C.
    Wang, Yun
    Xiao, Bo
    BIORESOURCE TECHNOLOGY, 2013, 138 : 109 - 116
  • [44] Membrane filtration biocathode microbial fuel cell for nitrogen removal and electricity generation
    Zhang, Guangyi
    Zhang, Hanmin
    Ma, Yanjie
    Yuan, Guangen
    Yang, Fenglin
    Zhang, Rong
    ENZYME AND MICROBIAL TECHNOLOGY, 2014, 60 : 56 - 63
  • [45] Effect of wetland plant fermentation broth on nitrogen removal and bioenergy generation in constructed wetland-microbial fuel cells
    Chen, Yiting
    Yan, Jun
    Chen, Mengli
    Guo, Fucheng
    Liu, Tao
    Chen, Yi
    FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING, 2022, 16 (12)
  • [46] Integrated Constructed Wetland-Microbial Fuel Cell using Biochar as Wetland Matrix: Influence on Power Generation and Textile Wastewater Treatment
    Sonu, Kumar
    Sogani, Monika
    Syed, Zainab
    CHEMISTRYSELECT, 2021, 6 (32): : 8323 - 8328
  • [47] An algal assisted constructed wetland-microbial fuel cell integrated with sand filter for efficient wastewater treatment and electricity production
    Gupta, Supriya
    Nayak, Ankita
    Roy, Chandrima
    Yadav, Asheesh Kumar
    CHEMOSPHERE, 2021, 263
  • [48] Effect of wetland plant fermentation broth on nitrogen removal and bioenergy generation in constructed wetland-microbial fuel cells
    Chen Yiting
    Yan Jun
    Chen Mengli
    Guo Fucheng
    Liu Tao
    Yi Chen
    Frontiers of Environmental Science & Engineering, 2022, 16 (12)
  • [49] Effect of wetland plant fermentation broth on nitrogen removal and bioenergy generation in constructed wetland-microbial fuel cells
    Yiting Chen
    Jun Yan
    Mengli Chen
    Fucheng Guo
    Tao Liu
    Yi Chen
    Frontiers of Environmental Science & Engineering, 2022, 16
  • [50] Performance assessment of innovative constructed wetland-microbial fuel cell for electricity production and dye removal
    Yadav, Asheesh Kumar
    Dash, Purnanjali
    Mohanty, Ayusman
    Abbassi, Rouzbeh
    Mishra, Barada Kanta
    ECOLOGICAL ENGINEERING, 2012, 47 : 126 - 131