Thermodynamic stabilization of nanocrystalline aluminum

被引:13
|
作者
Hohl, Jacob [1 ]
Kumar, Pankaj [1 ,2 ]
Misra, Mano [1 ]
Menezes, Pradeep [3 ]
Mushongera, Leslie T. [1 ]
机构
[1] Univ Nevada, Dept Chem & Mat Engn, Reno, NV 87557 USA
[2] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87106 USA
[3] Univ Nevada, Dept Mech Engn, Reno, NV 87557 USA
关键词
GRAIN-BOUNDARY SEGREGATION; AL-MG ALLOY; ENHANCED DUCTILITY; STRENGTH; TUNGSTEN; GROWTH; METALS; HEAT;
D O I
10.1007/s10853-021-06224-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanocrystalline metals are generally unstable due to a large volume fraction of high-energy grain boundaries associated with a small grain size. Preferential dopant segregation to the high-energy grain boundaries is observed to enhance the stability of the material's microstructure by minimizing its energy. Nanocrystalline aluminum-dopant systems were evaluated for thermodynamic stability against grain growth and phase precipitation via the mechanism of grain boundary segregation according to a modified regular nanocrystalline solution model. Fifty-one potential dopant elements have been evaluated for their efficacy in stabilizing nanostructures with three potential candidates, magnesium, lanthanum, and silicon, identified possessing the characteristics to promote grain boundary segregation and a state of thermodynamic stability in aluminum's nanocrystalline regime. The minimum dopant content required to achieve nanocrystalline microstructure stability is identified for each of the three candidate elements. Beyond this minimum content, further addition of the dopant elements decreased the final microstructure's stability with no effects on the existence of a stable nanocrystalline state.
引用
收藏
页码:14611 / 14623
页数:13
相关论文
共 50 条
  • [41] Foam stabilization by aluminum powder
    Sasikumar, S.
    Georgy, K.
    Mukherjee, M.
    Kumar, G. S. Vinod
    MATERIALS LETTERS, 2020, 262 (262)
  • [42] Stabilization and strengthening of nanocrystalline copper by alloying with tantalum
    Frolov, T.
    Darling, K. A.
    Kecskes, L. J.
    Mishin, Y.
    ACTA MATERIALIA, 2012, 60 (05) : 2158 - 2168
  • [43] Stabilization of nanocrystalline grain sizes by solute additions
    C. C. Koch
    R. O. Scattergood
    K. A. Darling
    J. E. Semones
    Journal of Materials Science, 2008, 43 : 7264 - 7272
  • [44] Synthesis and stabilization of nanocrystalline zirconia with MSU mesostructure
    Liu, XM
    Lu, GQ
    Yan, ZF
    JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (40): : 15523 - 15528
  • [45] A STUDY OF THE STABILIZATION OF ALUMINUM TITANATE
    DJAMBAZOV, S
    LEPKOVA, D
    IVANOV, I
    JOURNAL OF MATERIALS SCIENCE, 1994, 29 (09) : 2521 - 2525
  • [46] STABILIZATION OF GMA - WELDING OF ALUMINUM
    KIYOHARA, M
    OKADA, T
    WAKINO, Y
    YAMAMOTO, H
    WELDING JOURNAL, 1977, 56 (03) : 20 - 28
  • [47] STABILIZATION OF THE CAPACITY OF ALUMINUM FOIL
    STANISLAVCHIK, VF
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICHESKAYA TEKHNOLOGIYA, 1993, 36 (08): : 116 - 118
  • [48] Stabilization and recycling for aluminum dross
    Chen, CC
    Yang, FR
    Chen, JH
    Proceedings of the 8th International Symposium on East Asian Resources Recycling Technology-2005: RESOURCES RECYCLING TECHNOLOGY-2005, 2005, : 143 - 146
  • [49] STABILIZATION OF ACTIVATED ALUMINUM.
    Sarmurzina, R.G.
    Kurapov, G.G.
    Protection of Metals (English translation of Zaschita Metallov), 1985, 21 (05): : 647 - 648
  • [50] Phase stability in nanocrystalline metals: A thermodynamic consideration
    Qin, W.
    Nagase, T.
    Umakoshi, Y.
    JOURNAL OF APPLIED PHYSICS, 2007, 102 (12)