Load monitoring for active control of wind turbines

被引:41
|
作者
Cooperman, Aubryn [1 ]
Martinez, Marcias
机构
[1] Delft Univ Technol, Fac Aerosp Engn, NL-2629 HS Delft, Netherlands
来源
关键词
Load monitoring; Active load control; Fiber Bragg grating; Rayleigh backscattering; MEMS; Lidar; TRAILING-EDGE FLAPS; MODEL-PREDICTIVE CONTROL; INDIVIDUAL PITCH; STRUCTURAL HEALTH; SMART ROTOR; SENSORS; STRAIN; ALLEVIATION; VALIDATION; REDUCTION;
D O I
10.1016/j.rser.2014.08.029
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This review article examines the range of sensors that have been proposed for monitoring wind turbine blade loads for the purpose of active load control over the past decade. Wind turbine active load control requires sensors that are able to detect loads as they occur, in order to enable a prompt actuation of control devices. Loads may be detected based on structural effects or inferred from aerodynamic measurements. This paper is organized into the following sections: wind turbine control, requirements for load monitoring sensors, sensing technologies and field tests of load control. The types of sensors examined in this article include fiber optic sensors, inertial sensors, pressure measurements and remote optical sensing. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:189 / 201
页数:13
相关论文
共 50 条
  • [1] An overview of active load control techniques for wind turbines with an emphasis on microtabs
    Johnson, Scott J.
    Baker, Jonathon P.
    van Dam, C. P.
    Berg, Dale
    WIND ENERGY, 2010, 13 (2-3) : 239 - 253
  • [2] Active power control strategy of wind farm considering fatigue load of wind turbines
    Zhao, Jie
    Fang, Yudi
    He, Yuqin
    Fang, Junjun
    Wen, Libin
    Liang, Yilin
    Xiao, Siyi
    ENERGY REPORTS, 2021, 7 : 1466 - 1476
  • [3] Active Control of the Reliability of Wind Turbines
    Requate, Niklas
    Meyer, Tobias
    IFAC PAPERSONLINE, 2020, 53 (02): : 12789 - 12796
  • [4] Experimental Assessment of Fatigue Load Control for Wind Turbines employing Active Flow Control Devices
    Bartholomay, Sirko
    Krumbein, Sascha
    Deichmanny, Victoria
    Gentsch, Maik
    Perez-Becker, Sebastian
    Soto-Valle, Rodrigo
    Holst, David
    Nayeri, Christian N.
    Paschereit, Christian O.
    Oberleithner, Kilian
    AIAA SCITECH 2022 FORUM, 2022,
  • [5] Load Reducing Pitch Control for Wind Turbines
    Geyler, Martin
    Caselitz, Peter
    AT-AUTOMATISIERUNGSTECHNIK, 2008, 56 (12) : 627 - 635
  • [6] Fatigue Damage Mitigation by the Integration of Active and Passive Load Control Techniques on Wind Turbines
    Bottasso, C. L.
    Campagnolo, F.
    Croce, A.
    Tibaldi, C.
    WIND ENERGY - IMPACT OF TURBULENCE, 2014, 2 : 3 - 8
  • [7] Active tip deflection control for wind turbines
    Liew, Jaime
    Lio, Wai Hou
    Urban, Albert Meseguer
    Holierhoek, Jessica
    Kim, Taeseong
    RENEWABLE ENERGY, 2020, 149 : 445 - 454
  • [8] Extended Active Vibration Control for Wind Turbines
    Rumin, Rafal
    Bergander, Marek
    Cieslik, Jacek
    Kulpa, Mykola
    2017 XIIITH INTERNATIONAL CONFERENCE ON PERSPECTIVE TECHNOLOGIES AND METHODS IN MEMS DESIGN (MEMSTECH), 2017, : 38 - 40
  • [9] Sensorless active yaw control for wind turbines
    Farret, FA
    Pfitscher, LL
    Bernardon, DP
    IECON'01: 27TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-3, 2001, : 1370 - 1375
  • [10] ON THE APPLICATION OF ACTIVE FLOW CONTROL TO WIND TURBINES
    Seifert, Avraham
    Stalnov, Oksana
    Troshin, Victor
    Avnaim, Maor Hai
    PROCEEDINGS OF THE ASME/JSME/KSME JOINT FLUIDS ENGINEERING CONFERENCE 2011, VOL 1, PTS A-D, 2012, : 3051 - 3058