A Modified Fractional Calculus Approach to Model Hysteresis

被引:12
|
作者
Sunny, Mohammed Rabius [1 ]
Kapania, Rakesh K.
Moffitt, Ronald D. [2 ]
Mishra, Amitabh [3 ]
Goulbourne, Nakhiah [4 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Aerosp & Ocean Engn, Blacksburg, VA 24061 USA
[2] Inst Adv Learning & Res, Danville, VA 24540 USA
[3] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA
[4] Virginia Polytech Inst & State Univ, Dept Mech Engn, Blacksburg, VA 24061 USA
来源
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME | 2010年 / 77卷 / 03期
关键词
calculus; conducting polymers; electrical resistivity; electromechanical effects; hysteresis; nanocomposites; DERIVATIVE APPROACH; PREISACH MODEL; SHELL ELEMENT; VISCOELASTICITY; NANOCOMPOSITES; DEFORMATION; VIBRATION;
D O I
10.1115/1.4000413
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper describes the development of a fractional calculus approach to model the hysteretic behavior shown by the variation in electrical resistances with strain in conductive polymers. Experiments have been carried out on a conductive polymer nanocomposite sample to study its resistance-strain variation under strain varying with time in a triangular manner. A combined fractional derivative and integer order integral model and a fractional integral model (with two submodels) have been developed to simulate this behavior. The efficiency of these models has been discussed by comparing the results, obtained using these models, with the experimental data. It has been shown that by using only a few parameters, the hysteretic behavior of such materials can be modeled using the fractional calculus with some modifications.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [21] Fractional calculus approach to texture of digital image
    Pu, Yifei
    2006 8TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-4, 2006, : 1002 - 1006
  • [22] RELAXATION IN FILLED POLYMERS - A FRACTIONAL CALCULUS APPROACH
    METZLER, R
    SCHICK, W
    KILIAN, HG
    NONNENMACHER, TF
    JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (16): : 7180 - 7186
  • [23] Nonlocal elasticity: an approach based on fractional calculus
    Carpinteri, Alberto
    Cornetti, Pietro
    Sapora, Alberto
    MECCANICA, 2014, 49 (11) : 2551 - 2569
  • [24] Nonlocal elasticity: an approach based on fractional calculus
    Alberto Carpinteri
    Pietro Cornetti
    Alberto Sapora
    Meccanica, 2014, 49 : 2551 - 2569
  • [25] Electrostatics in fractal geometry: Fractional calculus approach
    Baskin, Emmanuel
    Iomin, Alexander
    CHAOS SOLITONS & FRACTALS, 2011, 44 (4-5) : 335 - 341
  • [26] Modified Grey Model Predictor Design Using Optimal Fractional-order Accumulation Calculus
    Yang Yang
    Dingyu Xue
    IEEE/CAAJournalofAutomaticaSinica, 2017, 4 (04) : 724 - 733
  • [27] Modified Grey Model Predictor Design Using Optimal Fractional-order Accumulation Calculus
    Yang, Yang
    Xue, Dingyu
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2017, 4 (04) : 724 - 733
  • [28] The use of fractional calculus to model the experimental creep-recovery behavior of modified bituminous binders
    Sapora, Alberto
    Cornetti, Pietro
    Carpinteri, Alberto
    Baglieri, Orazio
    Santagata, Ezio
    MATERIALS AND STRUCTURES, 2016, 49 (1-2) : 45 - 55
  • [29] The use of fractional calculus to model the experimental creep-recovery behavior of modified bituminous binders
    Alberto Sapora
    Pietro Cornetti
    Alberto Carpinteri
    Orazio Baglieri
    Ezio Santagata
    Materials and Structures, 2016, 49 : 45 - 55
  • [30] Fractional characteristic functions, and a fractional calculus approach for moments of random variables
    Živorad Tomovski
    Ralf Metzler
    Stefan Gerhold
    Fractional Calculus and Applied Analysis, 2022, 25 : 1307 - 1323