Isomorphism classes of Doche-Icart-Kohel curves over finite fields

被引:1
|
作者
Farashahi, Reza Rezaeian [1 ,2 ]
Hosseini, Mehran [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, POB 85145, Esfahan, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
关键词
Elliptic curve; j-Invariant; Isomorphism; Cryptography;
D O I
10.1016/j.ffa.2016.01.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give explicit formulas for the number of distinct elliptic curves over a finite field, up to isomorphism, in two families of curves introduced by C. Doche, T. Icart and D.R. Kohel. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:111 / 129
页数:19
相关论文
共 50 条
  • [31] Jacobians of curves over finite fields
    Voloch, JF
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2000, 30 (02) : 755 - 759
  • [32] Curves over finite fields and codes
    van der Geer, G
    EUROPEAN CONGRESS OF MATHEMATICS, VOL II, 2001, 202 : 225 - 238
  • [33] Counting curves over finite fields
    van der Geer, Gerard
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 32 : 207 - 232
  • [34] A construction of curves over finite fields
    Garcia, A
    Quoos, L
    ACTA ARITHMETICA, 2001, 98 (02) : 181 - 195
  • [35] On the number of isomorphism classes of CM elliptic curves defined over a number field
    Daniels, Harris B.
    Lozano-Robledo, Alvaro
    JOURNAL OF NUMBER THEORY, 2015, 157 : 367 - 396
  • [36] A Torelli Theorem for Curves over Finite Fields
    Bogomolov, Fedor
    Korotiaev, Mikhail
    Tschinkel, Yuri
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2010, 6 (01) : 245 - 294
  • [37] QUOTIENTS OF ELLIPTIC CURVES OVER FINITE FIELDS
    Achter, Jeffrey D.
    Wong, Siman
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (06) : 1395 - 1412
  • [38] GENERATORS OF ELLIPTIC CURVES OVER FINITE FIELDS
    Shparlinski, Igor E.
    Voloch, Jose Felipe
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2014, 9 (04): : 657 - 670
  • [39] On the size of the Jacobians of curves over finite fields
    Shparlinski, Igor
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2008, 39 (04): : 587 - 595
  • [40] Automatic sequences and curves over finite fields
    Bridy, Andrew
    ALGEBRA & NUMBER THEORY, 2017, 11 (03) : 685 - 712