New Shrinkage Parameters for the Liu-type Logistic Estimators

被引:49
|
作者
Asar, Yasin [1 ]
Genc, Asir [2 ]
机构
[1] Necmettin Erbakan Univ, Fac Sci, Dept Stat, Konya, Turkey
[2] Selcuk Univ, Fac Sci, Dept Stat, Konya, Turkey
关键词
Logistic regression; MLE; Multicollinearity; Shrinkage parameter; Primary; 62J07; Secondary; 62J02; RIDGE-REGRESSION ESTIMATORS; MONTE-CARLO; PERFORMANCE;
D O I
10.1080/03610918.2014.995815
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The binary logistic regression is a widely used statistical method when the dependent variable has two categories. In most of the situations of logistic regression, independent variables are collinear which is called the multicollinearity problem. It is known that multicollinearity affects the variance of maximum likelihood estimator (MLE) negatively. Therefore, this article introduces new shrinkage parameters for the Liu-type estimators in the Liu (2003) in the logistic regression model defined by Huang (2012) in order to decrease the variance and overcome the problem of multicollinearity. A Monte Carlo study is designed to show the goodness of the proposed estimators over MLE in the sense of mean squared error (MSE) and mean absolute error (MAE). Moreover, a real data case is given to demonstrate the advantages of the new shrinkage parameters.
引用
收藏
页码:1094 / 1103
页数:10
相关论文
共 50 条
  • [21] A new Liu-type estimator in linear regression model
    Yalian Li
    Hu Yang
    Statistical Papers, 2012, 53 : 427 - 437
  • [22] A new Liu-type estimator in linear regression model
    Li, Yalian
    Yang, Hu
    STATISTICAL PAPERS, 2012, 53 (02) : 427 - 437
  • [23] A new improved Liu-type estimator for Poisson regression models
    Akay, Kadri Ulas
    Ertan, Esra
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (05): : 1484 - 1503
  • [24] A new improvement Liu-type estimator for the Bell regression model
    Ertan, Esra
    Algamal, Zakariya Yahya
    Erkoc, Ali
    Akay, Kadri Ulas
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2025, 54 (03) : 603 - 614
  • [25] A new Liu-type estimator for the Inverse Gaussian Regression Model
    Akram, Muhammad Nauman
    Amin, Muhammad
    Qasim, Muhammad
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (07) : 1153 - 1172
  • [26] Inverse Gaussian Liu-type estimator
    Bulut, Y. Murat
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (10) : 4864 - 4879
  • [27] Efficiency of the modified jackknifed Liu-type estimator
    Esra Akdeniz Duran
    Fikri Akdeniz
    Statistical Papers, 2012, 53 : 265 - 280
  • [28] Corrigendum: a note on Liu-type shrinkage estimations in linear models (Statistics 56, 396-420)
    Nkurunziza, Severien
    STATISTICS, 2023, 57 (04) : 761 - 763
  • [29] Efficiency of the modified jackknifed Liu-type estimator
    Duran, Esra Akdeniz
    Akdeniz, Fikri
    STATISTICAL PAPERS, 2012, 53 (02) : 265 - 280
  • [30] Liu-type estimator for the gamma regression model
    Algamal, Zakariya Yahya
    Asar, Yasin
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (08) : 2035 - 2048