New Shrinkage Parameters for the Liu-type Logistic Estimators

被引:49
|
作者
Asar, Yasin [1 ]
Genc, Asir [2 ]
机构
[1] Necmettin Erbakan Univ, Fac Sci, Dept Stat, Konya, Turkey
[2] Selcuk Univ, Fac Sci, Dept Stat, Konya, Turkey
关键词
Logistic regression; MLE; Multicollinearity; Shrinkage parameter; Primary; 62J07; Secondary; 62J02; RIDGE-REGRESSION ESTIMATORS; MONTE-CARLO; PERFORMANCE;
D O I
10.1080/03610918.2014.995815
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The binary logistic regression is a widely used statistical method when the dependent variable has two categories. In most of the situations of logistic regression, independent variables are collinear which is called the multicollinearity problem. It is known that multicollinearity affects the variance of maximum likelihood estimator (MLE) negatively. Therefore, this article introduces new shrinkage parameters for the Liu-type estimators in the Liu (2003) in the logistic regression model defined by Huang (2012) in order to decrease the variance and overcome the problem of multicollinearity. A Monte Carlo study is designed to show the goodness of the proposed estimators over MLE in the sense of mean squared error (MSE) and mean absolute error (MAE). Moreover, a real data case is given to demonstrate the advantages of the new shrinkage parameters.
引用
收藏
页码:1094 / 1103
页数:10
相关论文
共 50 条
  • [1] Liu-Type Logistic Estimators with Optimal Shrinkage Parameter
    Asar, Yasin
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2016, 15 (01) : 738 - 751
  • [2] On the distribution of shrinkage parameters of Liu-type estimators
    Alheety, M. I.
    Ramanathan, T. V.
    Gore, S. D.
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2009, 23 (01) : 57 - 67
  • [3] Liu-type shrinkage estimators for mixture of logistic regressions: an osteoporosis study
    Ghanem, Elsayed
    Hatefi, Armin
    Usefi, Hamid
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [4] Unsupervised Liu-type shrinkage estimators for mixture of regression models
    Ghanem, Elsayed
    Hatefi, Armin
    Usefi, Hamid
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2024, 33 (08) : 1376 - 1391
  • [5] Liu-Type Logistic Estimator
    Inan, Deniz
    Erdogan, Birsen E.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2013, 42 (07) : 1578 - 1586
  • [6] Liu-Type Multinomial Logistic Estimator
    Abonazel, Mohamed R.
    Farghali, Rasha A.
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2019, 81 (02): : 203 - 225
  • [7] Liu-Type Multinomial Logistic Estimator
    Mohamed R. Abonazel
    Rasha A. Farghali
    Sankhya B, 2019, 81 : 203 - 225
  • [8] A new Liu-type estimator in binary logistic regression models
    Ertan, Esra
    Akay, Kadri Ulas
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (13) : 4370 - 4394
  • [9] Liu-type shrinkage estimations in linear models
    Yuzbasi, Bahadir
    Asar, Yasin
    Ahmed, S. Ejaz
    STATISTICS, 2022, 56 (02) : 396 - 420
  • [10] A new Liu-type estimator
    Fatma Sevinç Kurnaz
    Kadri Ulaş Akay
    Statistical Papers, 2015, 56 : 495 - 517