Global solutions for the one-dimensional compressible Navier-Stokes-Smoluchowski system

被引:9
|
作者
Zhang, Jianlin [1 ]
Song, Changming [1 ]
Li, Hong [2 ]
机构
[1] Zhongyuan Univ Technol, Dept Appl Math, Coll Sci, Zhengzhou 450007, Peoples R China
[2] Zhongyuan Univ Technol, Dept Appl Phys, Coll Sci, Zhengzhou 450007, Peoples R China
关键词
PARTICLE INTERACTION-MODEL; FLUID; EQUATIONS; SEDIMENTATION; SIMULATION;
D O I
10.1063/1.4982360
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider a fluid-particle interaction model for the evolution of particles dispersed in a fluid. The fluid flow is governed by the Navier-Stokes equations for a compressible fluid while the evolution of the particle densities is given by the Smoluchowski equation. The coupling between the dispersed and dense phases is obtained through the drag forces that the fluid and the particles exert mutually. We establish the existence and uniqueness of a global classical solution, the existence of weak solutions, and the existence of a unique strong solution of this system in 1D for initial data rho(0) without vacuum states. Published by AIP Publishing.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Vacuum problem of one-dimensional compressible Navier-Stokes equations
    Li, H. -L.
    Li, J.
    Xin, Z.
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON HYPERBOLIC PROBLEMS, 2008, : 161 - 172
  • [32] CAUCHY PROBLEM FOR THE ONE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES EQUATIONS
    连汝续
    刘健
    李海梁
    肖玲
    ActaMathematicaScientia, 2012, 32 (01) : 315 - 324
  • [33] Global existence of strong solutions of Navier–Stokes equations with non-Newtonian potential for one-dimensional isentropic compressible fluids
    Hongzhi Liu
    Hongjun Yuan
    Jiezeng Qiao
    Fanpei Li
    Zeitschrift für angewandte Mathematik und Physik, 2012, 63 : 865 - 878
  • [34] GLOBAL REGULAR SOLUTIONS FOR ONE-DIMENSIONAL DEGENERATE COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH LARGE DATA AND FAR FIELD VACUUM
    Cao, Yue
    Li, Hao
    Zhu, Shengguo
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (04) : 4658 - 4694
  • [35] Stationary solutions to the one-dimensional full compressible Navier-Stokes-Korteweg equations in the half line
    Li, Yeping
    Wu, Qiwei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 379 : 649 - 675
  • [36] Remarks on blowup of solutions for one-dimensional compressible Navier-Stokes equations with Maxwell's law
    Dong, Jianwei
    Zhang, Qiao
    Yang, Yong
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (10) : 4523 - 4532
  • [37] Global existence and large-time behavior of solutions to one-dimensional compressible Navier-Stokes system with outer pressure in the half-space
    Han, Xiaomin
    Wu, Yunshun
    Zhang, Rong
    JOURNAL OF MATHEMATICAL PHYSICS, 2025, 66 (01)
  • [38] Invariant Measures for the Stochastic One-Dimensional Compressible Navier-Stokes Equations
    Zelati, Michele Coti
    Glatt-Holtz, Nathan
    Trivisa, Konstantina
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03): : 1487 - 1522
  • [39] On one-dimensional compressible Navier–Stokes equations for a reacting mixture in unbounded domains
    Siran Li
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [40] Local Exact Controllability for the One-Dimensional Compressible Navier-Stokes Equation
    Ervedoza, Sylvain
    Glass, Olivier
    Guerrero, Sergio
    Puel, Jean-Pierre
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 206 (01) : 189 - 238