Stirling numbers, Eulerian idempotents and a diagram complex

被引:0
|
作者
Stoimenow, A [1 ]
机构
[1] Humboldt Univ, Math Inst, D-10099 Berlin, Germany
关键词
pure braid chord diagrams; Eulerian idempotents; Drinfel'd associator; Hochschild cohomology; Harrison cohomology; shuffles;
D O I
10.1142/S0218216598000152
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a homological explanation of the ideals of the Eulerian elements in the ring of the symmetric group in terms of subspaces of relations in the Kohno algebra of singular braid diagrams and discuss some known and new properties of Eulerian elements.
引用
收藏
页码:231 / 256
页数:26
相关论文
共 50 条
  • [21] The binomial-Stirling-Eulerian polynomials
    Ji, Kathy Q.
    Lin, Zhicong
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 120
  • [22] General Eulerian Numbers and Eulerian Polynomials
    Xiong, Tingyao
    Tsao, Hung-Ping
    Hall, Jonathan I.
    JOURNAL OF MATHEMATICS, 2013, 2013
  • [23] Generating functions for generalized Stirling type numbers, Array type polynomials, Eulerian type polynomials and their applications
    Yilmaz Simsek
    Fixed Point Theory and Applications, 2013
  • [24] Enumeration of idempotents in planar diagram monoids
    Dolinka, Igor
    East, James
    Evangelou, Athanasios
    FitzGerald, Des
    Ham, Nicholas
    Hyde, James
    Loughlin, Nicholas
    Mitchell, James D.
    JOURNAL OF ALGEBRA, 2019, 522 : 351 - 385
  • [25] Generating functions for generalized Stirling type numbers, Array type polynomials, Eulerian type polynomials and their applications
    Simsek, Yilmaz
    FIXED POINT THEORY AND APPLICATIONS, 2013,
  • [26] Enumeration of idempotents in diagram semigroups and algebras
    Dolinka, Igor
    East, James
    Evangelou, Athanasios
    FitzGerald, Des
    Ham, Nicholas
    Hyde, James
    Loughlin, Nicholas
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2015, 131 : 119 - 152
  • [27] NUMBERS ASSOCIATED WITH STIRLING NUMBERS AND XX
    LEHMER, DH
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1985, 15 (02) : 461 - 479
  • [28] An extension of Stirling numbers
    Branson, D
    FIBONACCI QUARTERLY, 1996, 34 (03): : 213 - 223
  • [29] Balanced Stirling numbers
    Maltenfort, Michael
    AEQUATIONES MATHEMATICAE, 2024,
  • [30] A generalization of Stirling numbers
    Yu, HQ
    FIBONACCI QUARTERLY, 1998, 36 (03): : 252 - 258