A Machine-Learning-Based Risk-Prediction Tool for HIV and Sexually Transmitted Infections Acquisition over the Next 12 Months

被引:24
|
作者
Xu, Xianglong [1 ,2 ,3 ]
Ge, Zongyuan [4 ]
Chow, Eric P. F. [1 ,2 ,5 ]
Yu, Zhen [2 ,4 ]
Lee, David [1 ]
Wu, Jinrong [6 ]
Ong, Jason J. [1 ,2 ,3 ]
Fairley, Christopher K. [1 ,2 ,3 ]
Zhang, Lei [1 ,2 ,3 ,7 ]
机构
[1] Alfred Hlth, Melbourne Sexual Hlth Ctr, Melbourne, Vic 3053, Australia
[2] Monash Univ, Fac Med Nursing & Hlth Sci, Cent Clin Sch, Melbourne, Vic 3800, Australia
[3] Xi An Jiao Tong Univ, China Australia Joint Res Ctr Infect Dis, Sch Publ Hlth, Hlth Sci Ctr, Xian 710061, Peoples R China
[4] Monash Univ, Fac Engn, Monash E Res Ctr, Nvidia AI Technol Res Ctr,Airdoc Res, Melbourne, Vic 3800, Australia
[5] Univ Melbourne, Ctr Epidemiol & Biostat, Melbourne Sch Populat & Global Hlth, Melbourne, Vic 3053, Australia
[6] La Trobe Univ, Res Ctr Data Analyt & Cognit, Bundoora, Vic 3086, Australia
[7] Zhengzhou Univ, Coll Publ Hlth, Dept Epidemiol & Biostat, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金; 英国医学研究理事会;
关键词
HIV; sexually transmitted infections; machine learning; risk prediction; behavioural intervention; DELAYED DIAGNOSIS; HEALTH; MEN; SEX; IMPLEMENTATION; POPULATION; VALIDATION; BEHAVIOR;
D O I
10.3390/jcm11071818
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: More than one million people acquire sexually transmitted infections (STIs) every day globally. It is possible that predicting an individual's future risk of HIV/STIs could contribute to behaviour change or improve testing. We developed a series of machine learning models and a subsequent risk-prediction tool for predicting the risk of HIV/STIs over the next 12 months. Methods: Our data included individuals who were re-tested at the clinic for HIV (65,043 consultations), syphilis (56,889 consultations), gonorrhoea (60,598 consultations), and chlamydia (63,529 consultations) after initial consultations at the largest public sexual health centre in Melbourne from 2 March 2015 to 31 December 2019. We used the receiver operating characteristic (AUC) curve to evaluate the model's performance. The HIV/STI risk-prediction tool was delivered via a web application. Results: Our risk-prediction tool had an acceptable performance on the testing datasets for predicting HIV (AUC = 0.72), syphilis (AUC = 0.75), gonorrhoea (AUC = 0.73), and chlamydia (AUC = 0.67) acquisition. Conclusions: Using machine learning techniques, our risk-prediction tool has acceptable reliability in predicting HIV/STI acquisition over the next 12 months. This tool may be used on clinic websites or digital health platforms to form part of an intervention tool to increase testing or reduce future HIV/STI risk.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Critical Analysis of Risk Factors and Machine-Learning-Based Gastric Cancer Risk Prediction Models: A Systematic Review
    Fan, Zeyu
    He, Ziju
    Miao, Wenjun
    Huang, Rongrong
    PROCESSES, 2023, 11 (08)
  • [22] Spatial distribution and machine learning prediction of sexually transmitted infections and associated factors among sexually active men and women in Ethiopia, evidence from EDHS 2016
    Kassaw, Abdul-Aziz Kebede
    Yilma, Tesfahun Melese
    Sebastian, Yakub
    Birhanu, Abraham Yeneneh
    Melaku, Mequannent Sharew
    Jemal, Sebwedin Surur
    BMC INFECTIOUS DISEASES, 2023, 23 (01)
  • [23] Spatial distribution and machine learning prediction of sexually transmitted infections and associated factors among sexually active men and women in Ethiopia, evidence from EDHS 2016
    Abdul-Aziz Kebede Kassaw
    Tesfahun Melese Yilma
    Yakub Sebastian
    Abraham Yeneneh Birhanu
    Mequannent Sharew Melaku
    Sebwedin Surur Jemal
    BMC Infectious Diseases, 23
  • [24] Clinical features-based machine learning models to separate sexually transmitted infections from other skin diagnoses
    Soe, Nyi Nyi
    Latt, Phyu Mon
    Yu, Zhen
    Lee, David
    Kim, Cham-Mill
    Tran, Daniel
    Ong, Jason J.
    Ge, Zongyuan
    Fairley, Christopher K.
    Zhang, Lei
    JOURNAL OF INFECTION, 2024, 88 (04)
  • [25] Type-Specific Cervico-Vaginal Human Papillomavirus Infection Increases Risk of HIV Acquisition Independent of Other Sexually Transmitted Infections
    Smith-McCune, Karen K.
    Shiboski, Stephen
    Chirenje, Mike Z.
    Magure, Tsitsi
    Tuveson, Jennifer
    Ma, Yifei
    Da Costa, Maria
    Moscicki, Anna-Barbara
    Palefsky, Joel M.
    Makunike-Mutasa, Rudo
    Chipato, Tsungai
    van der Straten, Ariane
    Sawaya, George F.
    PLOS ONE, 2010, 5 (04):
  • [26] Does machine-learning-based prediction of suicide risk actually reduce rates of suicide: A critical examination
    Thornton, Joseph
    Tandon, Rajiv
    ASIAN JOURNAL OF PSYCHIATRY, 2023, 88
  • [27] Clinical evaluation of a machine learning-based dysphagia risk prediction tool
    Gugatschka, Markus
    Egger, Nina Maria
    Haspl, K.
    Hortobagyi, David
    Jauk, Stefanie
    Feiner, Marlies
    Kramer, Diether
    EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 2024, 281 (08) : 4379 - 4384
  • [28] EstimATTR: A Simplified, Machine-Learning-Based Tool to Predict the Risk of Wild-Type Transthyretin Amyloid Cardiomyopathy
    Castano, Adam
    Heitner, Stephen B.
    Masri, Ahmad
    Huda, Ahsan
    Calambur, Veena
    Bruno, Marianna
    Schumacher, Jennifer
    Emir, Birol
    Isherwood, Catherine
    Shah, Sanjiv j.
    JOURNAL OF CARDIAC FAILURE, 2024, 30 (06) : 778 - 787
  • [29] Risk of HIV Acquisition Among Men Who Have Sex With Men Infected With Bacterial Sexually Transmitted Infections: A Systematic Review and Meta-Analysis
    Malekinejad, Mohsen
    Barker, Erin K.
    Merai, Rikita
    Lyles, Cynthia M.
    Bernstein, Kyle T.
    Sipe, Theresa Ann
    DeLuca, Julia B.
    Ridpath, Alison D.
    Gift, Thomas L.
    Tailor, Amrita
    Kahn, James G.
    SEXUALLY TRANSMITTED DISEASES, 2021, 48 (10) : E138 - E148
  • [30] Identifying women at highest risk for HIV acquisition across sub-Saharan Africa: a risk assessment tool based on machine-learning methods
    Rosenberg, N. E.
    Young, A.
    Liu, M.
    Shook-Sa, B. E.
    Sam-Agudu, N. A.
    Stranix-Chibanda, L.
    Yotebieng, M.
    Charurat, M. E.
    Justman, J. E.
    Chi, B. H.
    JOURNAL OF THE INTERNATIONAL AIDS SOCIETY, 2022, 25 : 232 - 232