Microwave Engineering of Programmable XXZ Hamiltonians in Arrays of Rydberg Atoms

被引:96
|
作者
Scholl, P. [1 ]
Williams, H. J. [1 ]
Bornet, G. [1 ]
Wallner, F. [1 ,4 ]
Barredo, D. [1 ,5 ]
Henriet, L. [2 ]
Signoles, A. [2 ]
Hainaut, C. [3 ]
Franz, T. [3 ]
Geier, S. [3 ]
Tebben, A. [3 ]
Salzinger, A. [3 ]
Zuern, G. [3 ]
Lahaye, T. [1 ]
Weidemuller, M. [3 ]
Browaeys, A. [1 ]
机构
[1] Univ Paris Saclay, Inst Opt Grad Sch, CNRS, Lab Charles Fabry, F-91127 Palaiseau, France
[2] Pasqal, 2 Ave Augustin Fresnel, F-91120 Palaiseau, France
[3] Heidelberg Univ, Phys Inst, Neuenheimer Feld 226, D-69120 Heidelberg, Germany
[4] Tech Univ Munich, Dept Phys, James Franck Str 1, D-85748 Garching, Germany
[5] Univ Oviedo UO, Nanomat & Nanotechnol Res Ctr CINN CSIC, Principado De Asturias 33940, El Entrego, Spain
来源
PRX QUANTUM | 2022年 / 3卷 / 02期
关键词
QUANTUM SIMULATIONS; PROPAGATION;
D O I
10.1103/PRXQuantum.3.020303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the resonant dipole-dipole interaction between Rydberg atoms and a periodic external microwave field to engineer XXZ spin Hamiltonians with tunable anisotropies. The atoms are placed in one-dimensional (1D) and two-dimensional (2D) arrays of optical tweezers. As illustrations, we apply this engineering to two iconic situations in spin physics: the Heisenberg model in square arrays and spin transport in 1D. We first benchmark the Hamiltonian engineering for two atoms and then demonstrate the freezing of the magnetization on an initially magnetized 2D array. Finally, we explore the dynamics of 1D domain-wall systems with both periodic and open boundary conditions. We systematically compare our data with numerical simulations and assess the residual limitations of the technique as well as routes for improvement. The geometrical versatility of the platform, combined with the flexibility of the simulated Hamiltonians, opens up exciting prospects in the fields of quantum simulation, quantum information processing, and quantum sensing.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] MULTIPLE TIME SCALES IN THE MICROWAVE IONIZATION OF RYDBERG ATOMS
    BUCHLEITNER, A
    DELANDE, D
    ZAKRZEWSKI, J
    MANTEGNA, RN
    ARNDT, M
    WALTHER, H
    PHYSICAL REVIEW LETTERS, 1995, 75 (21) : 3818 - 3821
  • [22] Controlled suppression of ionization of Rydberg atoms in a microwave field
    Manakov, D
    Uzer, T
    PHYSICA D, 1997, 100 (3-4): : 407 - 422
  • [23] MICROWAVE MULTIPHOTON IONIZATION AND EXCITATION OF HELIUM RYDBERG ATOMS
    VANDEWATER, W
    YOAKUM, S
    VANLEEUWEN, T
    SAUER, BE
    MOORMAN, L
    GALVEZ, EJ
    MARIANI, DR
    KOCH, PM
    PHYSICAL REVIEW A, 1990, 42 (01): : 572 - 591
  • [24] Conductance fluctuations in microwave-driven Rydberg atoms
    Buchleitner, A
    Guarneri, I
    Zakrzewski, J
    EUROPHYSICS LETTERS, 1998, 44 (02): : 162 - 167
  • [25] The Ulam problem and the ionization of Rydberg atoms by microwave radiation
    Roshchupkin, AS
    Krainov, VP
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1998, 87 (01) : 20 - 24
  • [26] Microwave spectroscopy of the Zeeman effect in Rydberg atoms of sodium
    Ryabtsev, II
    Tret'yakov, DB
    OPTICS AND SPECTROSCOPY, 2001, 90 (02) : 145 - 148
  • [27] IONIZATION OF RYDBERG ATOMS BY A CIRCULARLY POLARIZED MICROWAVE FIELD
    FU, P
    SCHOLZ, TJ
    HETTEMA, JM
    GALLAGHER, TF
    PHYSICAL REVIEW LETTERS, 1990, 64 (05) : 511 - 514
  • [28] The Ulam problem and the ionization of Rydberg atoms by microwave radiation
    A. S. Roshchupkin
    V. P. Krainov
    Journal of Experimental and Theoretical Physics, 1998, 87 : 20 - 24
  • [29] Microwave spectroscopy of the Zeeman effect in Rydberg atoms of sodium
    I. I. Ryabtsev
    D. B. Tret’yakov
    Optics and Spectroscopy, 2001, 90 : 145 - 148
  • [30] Microwave Spectrometer for Rydberg State Atoms: Last Improvements
    Pogrebnyak, N. L.
    Dyubko, S. F.
    Alekseev, E. A.
    Meshcheryakov, A. A.
    Tkachev, A. I.
    2016 9TH INTERNATIONAL KHARKIV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES (MSMW), 2016,