Microwave Engineering of Programmable XXZ Hamiltonians in Arrays of Rydberg Atoms

被引:96
|
作者
Scholl, P. [1 ]
Williams, H. J. [1 ]
Bornet, G. [1 ]
Wallner, F. [1 ,4 ]
Barredo, D. [1 ,5 ]
Henriet, L. [2 ]
Signoles, A. [2 ]
Hainaut, C. [3 ]
Franz, T. [3 ]
Geier, S. [3 ]
Tebben, A. [3 ]
Salzinger, A. [3 ]
Zuern, G. [3 ]
Lahaye, T. [1 ]
Weidemuller, M. [3 ]
Browaeys, A. [1 ]
机构
[1] Univ Paris Saclay, Inst Opt Grad Sch, CNRS, Lab Charles Fabry, F-91127 Palaiseau, France
[2] Pasqal, 2 Ave Augustin Fresnel, F-91120 Palaiseau, France
[3] Heidelberg Univ, Phys Inst, Neuenheimer Feld 226, D-69120 Heidelberg, Germany
[4] Tech Univ Munich, Dept Phys, James Franck Str 1, D-85748 Garching, Germany
[5] Univ Oviedo UO, Nanomat & Nanotechnol Res Ctr CINN CSIC, Principado De Asturias 33940, El Entrego, Spain
来源
PRX QUANTUM | 2022年 / 3卷 / 02期
关键词
QUANTUM SIMULATIONS; PROPAGATION;
D O I
10.1103/PRXQuantum.3.020303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the resonant dipole-dipole interaction between Rydberg atoms and a periodic external microwave field to engineer XXZ spin Hamiltonians with tunable anisotropies. The atoms are placed in one-dimensional (1D) and two-dimensional (2D) arrays of optical tweezers. As illustrations, we apply this engineering to two iconic situations in spin physics: the Heisenberg model in square arrays and spin transport in 1D. We first benchmark the Hamiltonian engineering for two atoms and then demonstrate the freezing of the magnetization on an initially magnetized 2D array. Finally, we explore the dynamics of 1D domain-wall systems with both periodic and open boundary conditions. We systematically compare our data with numerical simulations and assess the residual limitations of the technique as well as routes for improvement. The geometrical versatility of the platform, combined with the flexibility of the simulated Hamiltonians, opens up exciting prospects in the fields of quantum simulation, quantum information processing, and quantum sensing.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Two-dimensional arrays of individual Rydberg atoms for quantum simulation of spin Hamiltonians
    Lahaye, Thierry
    de Leseleuc, Sylvain
    Barredo, Daniel
    Lienhard, Vincent
    Browaeys, Antoine
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2017,
  • [2] Microwave Multiphoton Transitions in Rydberg Atoms
    Gallagher, T. F.
    Comments on Atomic and Molecular Physics, 1994, 30 (04):
  • [3] MICROWAVE IONIZATION OF NA RYDBERG ATOMS
    PILLET, P
    VANDENHEUVELL, HBV
    SMITH, WW
    KACHRU, R
    TRAN, NH
    GALLAGHER, TF
    PHYSICAL REVIEW A, 1984, 30 (01) : 280 - 294
  • [4] Microwave Hanle effect in Rydberg atoms
    Ryabtsev, I.I.
    Tretyakov, D.B.
    2001, American Institute of Physics Inc. (64):
  • [5] Microwave Hanle effect in Rydberg atoms
    Ryabtsev, II
    Tretyakov, DB
    PHYSICAL REVIEW A, 2001, 64 (03): : 8
  • [6] MICROWAVE IONIZATION AND EXCITATION OF RYDBERG ATOMS
    LEOPOLD, JG
    PERCIVAL, IC
    PHYSICAL REVIEW LETTERS, 1978, 41 (14) : 944 - 947
  • [7] Assembled arrays of Rydberg-interacting atoms
    Schlosser, Malte
    Ohl de Mello, Daniel
    Schaeffner, Dominik
    Preuschoff, Tilman
    Kohfahl, Lars
    Birkl, Gerhard
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2020, 53 (14)
  • [8] Ionization of Rydberg atoms at patterned electrode arrays
    Pu, Y.
    Dunning, F. B.
    PHYSICAL REVIEW A, 2013, 88 (01):
  • [9] Chaotic enhancement in microwave ionization of Rydberg atoms
    G. Benenti
    G. Casati
    D.L. Shepelyansky
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 1999, 5 : 311 - 326
  • [10] Microwave Electric Field Sensing with Rydberg Atoms
    Stack, Daniel T.
    Kunz, Paul D.
    Meyer, David H.
    Solmeyer, Neal
    QUANTUM INFORMATION AND COMPUTATION IX, 2016, 9873