Symplectic surfaces in symplectic 4-manifolds

被引:2
|
作者
Cho, MS [1 ]
Cho, YS [1 ]
机构
[1] Ewha Womans Univ, Dept Math, Seoul 120750, South Korea
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2003年 / 7卷 / 01期
关键词
Seiberg-Witten invariant; Gromov invariant; rational surface; ruled surface;
D O I
10.11650/twjm/1500407518
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let a closed, minimal, symplectic 4-manifold X contain a symplectic surface F such that the genus g of F is greater than or equal to. one and the value c(1) (TX) [F] > g. Then we show that the space X is rational or ruled.
引用
收藏
页码:77 / 87
页数:11
相关论文
共 50 条
  • [41] Semitoric integrable systems on symplectic 4-manifolds
    Pelayo, Alvaro
    Ngoc, San Vu
    INVENTIONES MATHEMATICAE, 2009, 177 (03) : 571 - 597
  • [42] Semitoric integrable systems on symplectic 4-manifolds
    Alvaro Pelayo
    San Vũ Ngọc
    Inventiones mathematicae, 2009, 177 : 571 - 597
  • [43] Unchaining surgery and topology of symplectic 4-manifolds
    R. İnanç Baykur
    Kenta Hayano
    Naoyuki Monden
    Mathematische Zeitschrift, 2023, 303
  • [44] SYMPLECTIC 4-MANIFOLDS VIA LORENTZIAN GEOMETRY
    Aazami, Amir Babak
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (01) : 387 - 394
  • [45] Unchaining surgery and topology of symplectic 4-manifolds
    Baykur, R. Inanc
    Hayano, Kenta
    Monden, Naoyuki
    MATHEMATISCHE ZEITSCHRIFT, 2023, 303 (03)
  • [46] On nonseparating contact hypersurfaces in symplectic 4-manifolds
    Albers, Peter
    Bramham, Barney
    Wendl, Chris
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2010, 10 (02): : 697 - 737
  • [47] Symplectic 4-manifolds admit Weinstein trisections
    Lambert-Cole, Peter
    Meier, Jeffrey
    Starkston, Laura
    JOURNAL OF TOPOLOGY, 2021, 14 (02) : 641 - 673
  • [48] Anti-symplectic involutions on non-Kahler symplectic 4-manifolds
    Cho, Yong Seung
    Hong, Yoon Hi
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (04) : 757 - 766
  • [49] ISOTOPY OF SYMPLECTIC BALLS, GROMOVS RADIUS AND THE STRUCTURE OF RULED SYMPLECTIC 4-MANIFOLDS
    LALONDE, F
    MATHEMATISCHE ANNALEN, 1994, 300 (02) : 273 - 296
  • [50] HOMOGENEOUS SYMPLECTIC 4-MANIFOLDS AND FINITE DIMENSIONAL LIE ALGEBRAS OF SYMPLECTIC VECTOR FIELDS ON THE SYMPLECTIC 4-SPACE
    Alekseevsky, D., V
    Santi, A.
    MOSCOW MATHEMATICAL JOURNAL, 2020, 20 (02) : 217 - 256