Symmetric informationally complete positive-operator-valued measures: A new computer study

被引:204
|
作者
Scott, A. J. [1 ,2 ]
Grassl, M. [3 ]
机构
[1] Griffith Univ, Ctr Quantum Comp Technol, Brisbane, Qld 4111, Australia
[2] Griffith Univ, Ctr Quantum Dynam, Brisbane, Qld 4111, Australia
[3] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
基金
新加坡国家研究基金会; 澳大利亚研究理事会;
关键词
EQUIANGULAR LINES; SIC-POVMS; FRAMES; BASES; ADVENT; SYSTEM; BOUNDS; LIFE;
D O I
10.1063/1.3374022
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on a new computer study of the existence of d(2) equiangular lines in d complex dimensions. Such maximal complex projective codes are conjectured to exist in all finite dimensions and are the underlying mathematical objects defining symmetric informationally complete measurements in quantum theory. We provide numerical solutions in all dimensions d <= 67 and, moreover, a putatively complete list of Weyl-Heisenberg covariant solutions for d <= 50. A symmetry analysis of this list leads to new algebraic solutions in dimensions d=24, 35, and 48, which are given together with algebraic solutions for d=4,...,15, and 19. (C) 2010 American Institute of Physics. [doi:10.1063/1.3374022]
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Experimental randomness certification with a symmetric informationally complete positive operator-valued measurement
    刘晨曦
    刘琨
    汪小润
    吴陆颜
    李剑
    王琴
    Chinese Optics Letters, 2020, 18 (10) : 77 - 81
  • [22] Symmetric informationally complete positive operator valued measure and probability representation of quantum mechanics
    Sergey N. Filippov
    Vladimir I. Man’ko
    Journal of Russian Laser Research, 2010, 31 : 211 - 231
  • [23] Entropic uncertainty relations for general symmetric informationally complete positive operator-valued measures and mutually unbiased measurements
    Huang, Shan
    Chen, Zeng-Bing
    Wu, Shengjun
    PHYSICAL REVIEW A, 2021, 103 (04)
  • [24] Experimental Realization of Quantum Tomography of Photonic Qudits via Symmetric Informationally Complete Positive Operator-Valued Measures
    Bent, N.
    Qassim, H.
    Tahir, A. A.
    Sych, D.
    Leuchs, G.
    Sanchez-Soto, L. L.
    Karimi, E.
    Boyd, R. W.
    PHYSICAL REVIEW X, 2015, 5 (04):
  • [25] Simulating Positive-Operator-Valued Measures with Projective Measurements
    Oszmaniec, Michal
    Guerini, Leonardo
    Wittek, Peter
    Acin, Antonio
    PHYSICAL REVIEW LETTERS, 2017, 119 (19)
  • [26] Positive-Operator-Valued Measures and Projection-Valued Measures of Noncommutative Time Operators
    Harald Atmanspacher
    Anton Amann
    International Journal of Theoretical Physics, 1998, 37 : 629 - 650
  • [27] Resource Theory of Coherence Based on Positive-Operator-Valued Measures
    Bischof, Felix
    Kampermann, Hermann
    Bruss, Dagmar
    PHYSICAL REVIEW LETTERS, 2019, 123 (11)
  • [28] Positive-operator-valued measures in the Hamiltonian formulation of quantum mechanics
    Arsenovic, D.
    Buric, N.
    Popovic, D. B.
    Radonjic, M.
    Prvanovic, S.
    PHYSICAL REVIEW A, 2015, 91 (06):
  • [29] Converting coherence based on positive-operator-valued measures into entanglement
    Kim, Sunho
    Xiong, Chunhe
    Kumar, Asutosh
    Wu, Junde
    PHYSICAL REVIEW A, 2021, 103 (05)
  • [30] Experimental characterization of qutrits using symmetric informationally complete positive operator-valued measurements
    Medendorp, Z. E. D.
    Torres-Ruiz, F. A.
    Shalm, L. K.
    Tabia, G. N. M.
    Fuchs, C. A.
    Steinberg, A. M.
    PHYSICAL REVIEW A, 2011, 83 (05):