Symmetric informationally complete positive-operator-valued measures: A new computer study

被引:204
|
作者
Scott, A. J. [1 ,2 ]
Grassl, M. [3 ]
机构
[1] Griffith Univ, Ctr Quantum Comp Technol, Brisbane, Qld 4111, Australia
[2] Griffith Univ, Ctr Quantum Dynam, Brisbane, Qld 4111, Australia
[3] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
基金
新加坡国家研究基金会; 澳大利亚研究理事会;
关键词
EQUIANGULAR LINES; SIC-POVMS; FRAMES; BASES; ADVENT; SYSTEM; BOUNDS; LIFE;
D O I
10.1063/1.3374022
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on a new computer study of the existence of d(2) equiangular lines in d complex dimensions. Such maximal complex projective codes are conjectured to exist in all finite dimensions and are the underlying mathematical objects defining symmetric informationally complete measurements in quantum theory. We provide numerical solutions in all dimensions d <= 67 and, moreover, a putatively complete list of Weyl-Heisenberg covariant solutions for d <= 50. A symmetry analysis of this list leads to new algebraic solutions in dimensions d=24, 35, and 48, which are given together with algebraic solutions for d=4,...,15, and 19. (C) 2010 American Institute of Physics. [doi:10.1063/1.3374022]
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Two-qubit symmetric informationally complete positive-operator-valued measures
    Zhu, Huangjun
    Teo, Yong Siah
    Englert, Berthold-Georg
    PHYSICAL REVIEW A, 2010, 82 (04):
  • [2] Constructing symmetric informationally complete positive-operator-valued measures in Bloch space
    Salazar, R.
    Goyeneche, D.
    Delgado, A.
    Saavedra, C.
    PHYSICS LETTERS A, 2012, 376 (04) : 325 - 329
  • [3] Quantum homodyne tomography as an informationally complete positive-operator-valued measure
    Albini, Paolo
    De Vito, Ernesto
    Toigo, Alessandro
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (29)
  • [4] Equioverlapping measurements as extensions of symmetric informationally complete positive operator valued measures
    Feng, Lingxuan
    Luo, Shunlong
    Zhao, Yan
    Guo, Zhihua
    PHYSICAL REVIEW A, 2024, 109 (01)
  • [5] Two new constructions of approximately symmetric informationally complete positive operator-valued measures
    Wang, Gang
    Niu, Min-Yao
    Fu, Fang-Wei
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2019, 17 (03)
  • [6] Two constructions of approximately symmetric informationally complete positive operator-valued measures
    Cao, Xiwang
    Mi, Jiafu
    Xu, Shanding
    JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (06)
  • [7] Symmetric informationally complete-positive operator valued measures and the extended Clifford group
    Appleby, DM
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (05)
  • [8] Experimental characterization of qutrits using symmetric, informationally complete positive operator-valued measures
    Medendorp, Z. E. D.
    Torres-Ruiz, F. A.
    Shalm, L. K.
    Tabia, G. N. M.
    Fuchs, C. A.
    Steinberg, A. M.
    INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS, 2011, 8001
  • [9] Realization of entanglement-assisted qubit-covariant symmetric-informationally-complete positive-operator-valued measurements
    Du, Jiangfeng
    Sun, Min
    Peng, Xinhua
    Durt, Thomas
    PHYSICAL REVIEW A, 2006, 74 (04):
  • [10] Construction of general symmetric-informationally-complete-positive-operator-valued measures by using a complete orthogonal basis
    Yoshida, Masakazu
    Kimura, Gen
    PHYSICAL REVIEW A, 2022, 106 (02)