We introduce an improved Bonferroni method for testing two primary endpoints in clinical trial settings using a new data-adaptive critical value that explicitly incorporates the sample correlation coefficient. Our methodology is developed for the usual Student's t-test statistics for testing the means under normal distributional setting with unknown population correlation and variances. Specifically, we construct a confidence interval for the unknown population correlation and show that the estimated type-1 error rate of the Bonferroni method with the population correlation being estimated by its lower confidence limit can be bounded from above less conservatively than using the traditional Bonferroni upper bound. We also compare the new procedure with other procedures commonly used for the multiple testing problem addressed in this paper.
机构:
Univ Michigan, Sch Publ Hlth, Dept Biostat, Ann Arbor, MI 48109 USA
Inst Social Res, Survcy Methodol Program, Ann Arbor, MI 48106 USAUniv Michigan, Sch Publ Hlth, Dept Biostat, Ann Arbor, MI 48109 USA
机构:
Univ Lancaster, Fylde Coll, Dept Math & Stat, MPS Res Unit, Lancaster LA1 4YE, EnglandUniv Lancaster, Fylde Coll, Dept Math & Stat, MPS Res Unit, Lancaster LA1 4YE, England
Whitehead, John
Valdes-Marquez, Elsa
论文数: 0引用数: 0
h-index: 0
机构:
Univ Reading, Sect Quantitat Biol & Appl Stat, Reading, Berks, EnglandUniv Lancaster, Fylde Coll, Dept Math & Stat, MPS Res Unit, Lancaster LA1 4YE, England
Valdes-Marquez, Elsa
Johnson, Patrick
论文数: 0引用数: 0
h-index: 0
机构:
Pfizer Global Res & Dev, Sandwich, Kent, EnglandUniv Lancaster, Fylde Coll, Dept Math & Stat, MPS Res Unit, Lancaster LA1 4YE, England
Johnson, Patrick
Graham, Gordon
论文数: 0引用数: 0
h-index: 0
机构:
Pfizer Global Res & Dev, Sandwich, Kent, EnglandUniv Lancaster, Fylde Coll, Dept Math & Stat, MPS Res Unit, Lancaster LA1 4YE, England