Preparing narrow velocity distributions for quantum memories in room-temperature alkali-metal vapors

被引:11
|
作者
Main, D. [1 ]
Hird, T. M. [1 ,2 ]
Gao, S. [1 ]
Oguz, E. [1 ]
Saunders, D. J. [1 ]
Walmsley, I. A. [1 ,3 ]
Ledingham, P. M. [1 ,4 ]
机构
[1] Univ Oxford, Clarendon Lab, Pk Rd, Oxford OX1 3PU, England
[2] UCL, Dept Phys & Astron, London WC1E 6BT, England
[3] Imperial Coll London, Dept Phys, QOLS, London SW7 2BW, England
[4] Univ Southampton, Dept Phys & Astron, Southampton SO17 1BJ, Hants, England
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Atoms - Bandwidth - Alkali metals - Optical pumping;
D O I
10.1103/PhysRevA.103.043105
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum memories are a crucial technology for enabling large-scale quantum networks through synchronization of probabilistic operations. Such networks impose strict requirements on quantum memory, such as storage time, retrieval efficiency, bandwidth, and scalability. On- and off-resonant ladder protocols on warm atomic vapor platforms are promising candidates, combining efficient high-bandwidth operation with low-noise on-demand retrieval. However, their storage time is severely limited by motion-induced dephasing caused by the broad velocity distribution of atoms composing the vapor. In this paper, we demonstrate velocity selective optical pumping to overcome this decoherence mechanism. This will increase the achievable memory storage time of vapor memories. This technique can also be used for preparing arbitrarily shaped absorption profiles, for instance, preparing an atomic frequency comb absorption feature.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Optimized optical tomography of quantum states of a room-temperature alkali-metal vapor
    Kopciuch, Marek
    Smolis, Magdalena
    Miranowicz, Adam
    Pustelny, Szymon
    PHYSICAL REVIEW A, 2024, 109 (03)
  • [2] ELECTRONIC PROMOTION OF SILICON OXYNITRIDATION AT ROOM-TEMPERATURE BY ALKALI-METAL CATALYSTS
    GLACHANT, A
    SOUKIASSIAN, P
    KIM, ST
    HURYCH, Z
    APPLIED SURFACE SCIENCE, 1993, 65-6 : 847 - 853
  • [3] Room-Temperature Intermolecular Hydroamination of Vinylarenes Catalyzed by Alkali-Metal Ferrate Complexes
    Tortajada, Andreu
    Hevia, Eva
    ACS ORGANIC & INORGANIC AU, 2024,
  • [4] ROOM-TEMPERATURE NITRIDATION OF GALLIUM-ARSENIDE USING ALKALI-METAL AND MOLECULAR NITROGEN
    SOUKIASSIAN, P
    STARNBERG, HI
    KENDELEWICZ, T
    HURYCH, ZD
    PHYSICAL REVIEW B, 1990, 42 (06): : 3769 - 3772
  • [5] Generation of atomic spin orientation with a linearly polarized beam in room-temperature alkali-metal vapor
    Bevington, P.
    Gartman, R.
    Chalupczak, W.
    PHYSICAL REVIEW A, 2020, 101 (01)
  • [6] Velocity Scanning Tomography for Room-Temperature Quantum Simulation
    Wang, Jiefei
    Mao, Ruosong
    Xu, Xingqi
    Lu, Yunzhou
    Dai, Jianhao
    Liu, Xiao
    Liu, Gang-Qin
    Lu, Dawei
    Hu, Huizhu
    Zhu, Shi-Yao
    Cai, Han
    Wang, Da-Wei
    PHYSICAL REVIEW LETTERS, 2024, 133 (18)
  • [7] Room-Temperature Quantum Memories Based on Molecular Electron Spin Ensembles
    Lenz, Samuel
    Koenig, Dennis
    Hunger, David
    van Slageren, Joris
    ADVANCED MATERIALS, 2021, 33 (30)
  • [8] Room temperature inorganic ''quasi-molten salts'' as alkali-metal electrolytes
    Xu, K
    Zhang, S
    Angell, CA
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (11) : 3548 - 3554
  • [9] Hong–Ou–Mandel interference linking independent room-temperature quantum memories
    CHAO-NI ZHANG
    HANG LI
    JIAN-PENG DOU
    FENG LU
    HONG-ZHE YANG
    XIAO-LING PANG
    XIAN-MIN JIN
    Photonics Research, 2022, 10 (10) : 2388 - 2393
  • [10] POLY(ETHYLENE OXIDE) - ALKALI-METAL - SILVER-HALIDE SALT SYSTEMS WITH HIGH IONIC-CONDUCTIVITY AT ROOM-TEMPERATURE
    STEVENS, JR
    MELLANDER, BE
    SOLID STATE IONICS, 1986, 21 (03) : 203 - 206