Velocity Scanning Tomography for Room-Temperature Quantum Simulation

被引:0
|
作者
Wang, Jiefei [1 ,2 ,3 ]
Mao, Ruosong [1 ,2 ]
Xu, Xingqi [1 ,2 ]
Lu, Yunzhou [1 ,2 ]
Dai, Jianhao [1 ,2 ]
Liu, Xiao [1 ,2 ]
Liu, Gang-Qin [4 ,5 ]
Lu, Dawei [6 ,7 ]
Hu, Huizhu [3 ]
Zhu, Shi-Yao [1 ,2 ,3 ,8 ]
Cai, Han [3 ]
Wang, Da-Wei [1 ,2 ,3 ,8 ]
机构
[1] Zhejiang Univ, Sch Phys, Zhejiang Key Lab Micronano Quantum Chips & Quantum, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, State Key Lab Extreme Photon & Instrumentat, Hangzhou 310027, Peoples R China
[3] Zhejiang Univ, Coll Opt Sci & Engn, Hangzhou 310027, Peoples R China
[4] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[5] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[6] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[7] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[8] Hefei Natl Lab, Hefei 230088, Peoples R China
关键词
EDGE STATES; PHASE; POLARIZATION; LIGHT; BANDS; GAS;
D O I
10.1103/PhysRevLett.133.183403
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum simulation offers an analog approach for exploring exotic quantum phenomena using controllable platforms, typically necessitating ultracold temperatures to maintain the quantum coherence. Superradiance lattices (SLs) have been harnessed to simulate coherent topological physics at room temperature, but the thermal motion of atoms remains a notable challenge in accurately measuring the physical quantities. To overcome this obstacle, we implement a velocity scanning tomography technique to discern the responses of atoms with different velocities, allowing cold-atom spectroscopic resolution within room-temperature SLs. By comparing absorption spectra with and without atoms moving at specific velocities, we can derive the Wannier-Stark ladders of the SL across various effective static electric fields, their strengths being proportional to the atomic velocities. We extract the Zak phase of the SL by monitoring the ladder frequency shift as a function of the atomic velocity, effectively demonstrating the topological winding of the energy bands. Our research signifies the feasibility of room-temperature quantum simulation and facilitates their applications in quantum information processing.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] ROOM-TEMPERATURE QUANTUM MAGNETS
    Wilson, Elizabeth
    CHEMICAL & ENGINEERING NEWS, 2009, 87 (34) : 12 - 12
  • [2] Room-temperature superconductivity and quantum physics
    Armen Gulian
    Deborah Van Vechten
    Emmanuele Cappelluti
    Oleg Dolgov
    Jeff Tollaksen
    Gurgen Melkonyan
    Boris Gorshunov
    Cristian Bourgeois
    Quantum Studies: Mathematics and Foundations, 2018, 5 (1) : 1 - 3
  • [3] Room-temperature superconductivity and quantum physics
    Gulian, Armen
    Van Vechten, Deborah
    Cappelluti, Emmanuele
    Dolgov, Oleg
    Tollaksen, Jeff
    Melkonyan, Gurgen
    Gorshunov, Boris
    Bourgeois, Cristian
    QUANTUM STUDIES-MATHEMATICS AND FOUNDATIONS, 2018, 5 (01) : 1 - 3
  • [4] Scanning room-temperature photoluminescence in polycrystalline silicon
    Koshka, Y
    Ostapenko, S
    Tarasov, I
    McHugo, S
    Kalejs, JP
    APPLIED PHYSICS LETTERS, 1999, 74 (11) : 1555 - 1557
  • [5] Unconditional room-temperature quantum memory
    Hosseini, M.
    Campbell, G.
    Sparkes, B. M.
    Lam, P. K.
    Buchler, B. C.
    NATURE PHYSICS, 2011, 7 (10) : 794 - 798
  • [6] Unconditional room-temperature quantum memory
    M. Hosseini
    G. Campbell
    B. M. Sparkes
    P. K. Lam
    B. C. Buchler
    Nature Physics, 2011, 7 : 794 - 798
  • [7] Room-temperature velocity saturation in intrinsic graphene
    Shishir, R. S.
    Ferry, D. K.
    Goodnick, S. M.
    16TH INTERNATIONAL CONFERENCE ON ELECTRON DYNAMICS IN SEMICONDUCTORS, OPTOELECTRONICS AND NANOSTRUCTURES (EDISON 16), 2009, 193
  • [8] Optimized optical tomography of quantum states of a room-temperature alkali-metal vapor
    Kopciuch, Marek
    Smolis, Magdalena
    Miranowicz, Adam
    Pustelny, Szymon
    PHYSICAL REVIEW A, 2024, 109 (03)
  • [9] DETERMINATION OF CIPROFLOXACIN BY SYNCHRONOUS SCANNING ROOM-TEMPERATURE PHOSPHORIMETRY
    Nava-Junior, I. S.
    Aucelio, R. Q.
    BRAZILIAN JOURNAL OF ANALYTICAL CHEMISTRY, 2010, 1 (00): : 18 - 24
  • [10] DETERMINATION OF CIPROFLOXACIN BY SYNCHRONOUS SCANNING ROOM-TEMPERATURE PHOSPHORIMETRY
    Nava, I. . S.
    Aucelio, R. Q.
    BRAZILIAN JOURNAL OF ANALYTICAL CHEMISTRY, 2011, 1 (03): : 124 - 130