Velocity Scanning Tomography for Room-Temperature Quantum Simulation

被引:0
|
作者
Wang, Jiefei [1 ,2 ,3 ]
Mao, Ruosong [1 ,2 ]
Xu, Xingqi [1 ,2 ]
Lu, Yunzhou [1 ,2 ]
Dai, Jianhao [1 ,2 ]
Liu, Xiao [1 ,2 ]
Liu, Gang-Qin [4 ,5 ]
Lu, Dawei [6 ,7 ]
Hu, Huizhu [3 ]
Zhu, Shi-Yao [1 ,2 ,3 ,8 ]
Cai, Han [3 ]
Wang, Da-Wei [1 ,2 ,3 ,8 ]
机构
[1] Zhejiang Univ, Sch Phys, Zhejiang Key Lab Micronano Quantum Chips & Quantum, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, State Key Lab Extreme Photon & Instrumentat, Hangzhou 310027, Peoples R China
[3] Zhejiang Univ, Coll Opt Sci & Engn, Hangzhou 310027, Peoples R China
[4] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[5] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[6] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[7] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[8] Hefei Natl Lab, Hefei 230088, Peoples R China
关键词
EDGE STATES; PHASE; POLARIZATION; LIGHT; BANDS; GAS;
D O I
10.1103/PhysRevLett.133.183403
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum simulation offers an analog approach for exploring exotic quantum phenomena using controllable platforms, typically necessitating ultracold temperatures to maintain the quantum coherence. Superradiance lattices (SLs) have been harnessed to simulate coherent topological physics at room temperature, but the thermal motion of atoms remains a notable challenge in accurately measuring the physical quantities. To overcome this obstacle, we implement a velocity scanning tomography technique to discern the responses of atoms with different velocities, allowing cold-atom spectroscopic resolution within room-temperature SLs. By comparing absorption spectra with and without atoms moving at specific velocities, we can derive the Wannier-Stark ladders of the SL across various effective static electric fields, their strengths being proportional to the atomic velocities. We extract the Zak phase of the SL by monitoring the ladder frequency shift as a function of the atomic velocity, effectively demonstrating the topological winding of the energy bands. Our research signifies the feasibility of room-temperature quantum simulation and facilitates their applications in quantum information processing.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Room-temperature polariton quantum fluids in halide perovskites
    Peng, Kai
    Tao, Renjie
    Haeberle, Louis
    Li, Quanwei
    Jin, Dafei
    Fleming, Graham R.
    Kena-Cohen, Stephane
    Zhang, Xiang
    Bao, Wei
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [32] Enhancement of room-temperature photoluminescence in InAs quantum dots
    Lu, W
    Ji, YL
    Chen, GB
    Tang, NY
    Chen, XS
    Shen, SC
    Zhao, QX
    Willander, M
    APPLIED PHYSICS LETTERS, 2003, 83 (21) : 4300 - 4302
  • [33] Signatures of Room-Temperature Quantum Interference in Molecular Junctions
    Liu, Shi-Xia
    Ismael, Ali K.
    Al-Jobory, Alaa
    Lambert, Colin J.
    ACCOUNTS OF CHEMICAL RESEARCH, 2023, : 322 - 331
  • [34] Room-temperature polariton quantum fluids in halide perovskites
    Kai Peng
    Renjie Tao
    Louis Haeberlé
    Quanwei Li
    Dafei Jin
    Graham R. Fleming
    Stéphane Kéna-Cohen
    Xiang Zhang
    Wei Bao
    Nature Communications, 13
  • [35] A broadband DLCZ quantum memory in room-temperature atoms
    Dou, Jian-Peng
    Yang, Ai-Lin
    Du, Mu-Yan
    Lao, Di
    Gao, Jun
    Qiao, Lu-Feng
    Li, Hang
    Pang, Xiao-Ling
    Feng, Zhen
    Tang, Hao
    Jin, Xian-Min
    COMMUNICATIONS PHYSICS, 2018, 1
  • [36] A broadband DLCZ quantum memory in room-temperature atoms
    Jian-Peng Dou
    Ai-Lin Yang
    Mu-Yan Du
    Di Lao
    Jun Gao
    Lu-Feng Qiao
    Hang Li
    Xiao-Ling Pang
    Zhen Feng
    Hao Tang
    Xian-Min Jin
    Communications Physics, 1
  • [37] ROOM-TEMPERATURE
    CRAYTON, MA
    SCIENCE, 1980, 208 (4444) : 552 - 552
  • [38] Room-temperature lasing in a single nanowire with quantum dots
    Tatebayashi J.
    Kako S.
    Ho J.
    Ota Y.
    Iwamoto S.
    Arakawa Y.
    Nature Photonics, 2015, 9 (8) : 501 - 505
  • [39] THERMAL VERSUS QUANTUM ROOM-TEMPERATURE INFRARED DETECTORS
    KARASIKOV, N
    ROITBERG, MB
    INFRARED PHYSICS, 1981, 21 (06): : 333 - 335
  • [40] Quantum correlations from a room-temperature optomechanical cavity
    Purdy, T. P.
    Grutter, K. E.
    Srinivasan, K.
    Taylor, J. M.
    SCIENCE, 2017, 356 (6344) : 1265 - 1268