A Single-Molecule View of Genome Editing Proteins: Biophysical Mechanisms for TALEs and CRISPR/Cas9

被引:9
|
作者
Cuculis, Luke [1 ]
Schroeder, Charles M. [1 ,2 ]
机构
[1] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
关键词
genome editing; TALEN; CRISPR/Cas9; single molecule; DNA search; ZINC-FINGER NUCLEASES; DNA RECOGNITION; REVEALS; CELL; ENDONUCLEASE; SPECIFICITY; IMMUNITY; BINDING; SEARCH; CAS9;
D O I
10.1146/annurev-chembioeng-060816-101603
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Exciting new advances in genome engineering have unlocked the potential to radically alter the treatment of human disease. In this review, we discuss the application of single-molecule techniques to uncover the mechanisms behind two premier classes of genome editing proteins: transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas). These technologies have facilitated a striking number of gene editing applications in a variety of organisms; however, we are only beginning to understand the molecular mechanisms governing the DNA editing properties of these systems. Here, we discuss the DNA search and recognition process for TALEs and Cas9 that have been revealed by recent single-molecule experiments.
引用
收藏
页码:577 / 597
页数:21
相关论文
共 50 条
  • [31] Efficient Editing of an Adenoviral Vector Genome with CRISPR/Cas9
    Li, Qiang
    Wang, Hui
    Gong, Chen-yu
    Chen, Zhao
    Yang, Jia-xing
    Shao, Hong-wei
    Zhang, Wen-feng
    INDIAN JOURNAL OF MICROBIOLOGY, 2021, 61 (01) : 91 - 95
  • [32] CRISPR/Cas9 genome editing through in planta transformation
    Zlobin, Nikolay E.
    Lebedeva, Marina V.
    Taranov, Vasiliy V.
    CRITICAL REVIEWS IN BIOTECHNOLOGY, 2020, 40 (02) : 153 - 168
  • [33] CRISPR/Cas9 for genome editing: progress, implications and challenges
    Zhang, Feng
    Wen, Yan
    Guo, Xiong
    HUMAN MOLECULAR GENETICS, 2014, 23 : R40 - R46
  • [34] Genome editing of Clostridium autoethanogenum using CRISPR/Cas9
    Nagaraju, Shilpa
    Davies, Naomi Kathleen
    Walker, David Jeffrey Fraser
    Kopke, Michael
    Simpson, Sean Dennis
    BIOTECHNOLOGY FOR BIOFUELS, 2016, 9
  • [35] CRISPR/Cas9 genome editing of RDEB mutation hotspot
    Naso, G.
    Petrova, A.
    Qasim, W.
    HUMAN GENE THERAPY, 2019, 30 (02) : A8 - A8
  • [36] Recent Advances in Genome Editing Using CRISPR/Cas9
    Ding, Yuduan
    Li, Hong
    Chen, Ling-Ling
    Xie, Kabin
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [37] Genome editing of Clostridium autoethanogenum using CRISPR/Cas9
    Shilpa Nagaraju
    Naomi Kathleen Davies
    David Jeffrey Fraser Walker
    Michael Köpke
    Séan Dennis Simpson
    Biotechnology for Biofuels, 9
  • [38] Insights into maize genome editing via CRISPR/Cas9
    Agarwal, Astha
    Yadava, Pranjal
    Kumar, Krishan
    Singh, Ishwar
    Kaul, Tanushri
    Pattanayak, Arunava
    Agrawal, Pawan Kumar
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2018, 24 (02) : 175 - 183
  • [39] Expanding the Range of CRISPR/Cas9 Genome Editing in Rice
    Hu, Xixun
    Wang, Chun
    Fu, Yaping
    Liu, Qing
    Jiao, Xiaozhen
    Wang, Kejian
    MOLECULAR PLANT, 2016, 9 (06) : 943 - 945
  • [40] Treatment of Dyslipidemia Using CRISPR/Cas9 Genome Editing
    Alexandra C. Chadwick
    Kiran Musunuru
    Current Atherosclerosis Reports, 2017, 19