Aligned hydroxyapatite nano-crystal formation on a polyamide surface

被引:14
|
作者
Huang, Di [1 ,2 ]
Yin, Meng [1 ]
Lin, Qiaoxia [1 ]
Qin, Yi [1 ]
Wei, Yan [1 ]
Hu, Yinchun [1 ]
Lian, Xiaojie [1 ]
Guo, Meiqing [1 ]
Du, Jingjing [1 ]
Chen, Weiyi [2 ]
机构
[1] Taiyuan Univ Technol, Res Ctr Nanobiomat & Regenerat Med, Dept Biomed Engn, Coll Mech, Taiyuan 030024, Shanxi, Peoples R China
[2] Taiyuan Univ Technol, Shanxi Key Lab Mat Strength & Struct Impact, Inst Appl Mech & Biomed Engn, Taiyuan 030024, Shanxi, Peoples R China
来源
RSC ADVANCES | 2017年 / 7卷 / 68期
关键词
ENERGY-DISSIPATION; IN-VITRO; BONE; MINERALIZATION; BEHAVIORS; MECHANISM; GROWTH; REPAIR; FILMS;
D O I
10.1039/c7ra07182e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Controlling the orientation of well-crystallized nano-hydroxyapatite (n-HA) remains a difficult task because of the complicated process of n-HA crystallization. In the present research, highly aligned n-HA arrays were fabricated on a polyamide matrix. The oriented n-HA crystals were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectric spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR). The mechanism of how these structures form was explored. The results show that the oriented n-HA arrays are formed on a calcium treated polyamide matrix. The diameter of the n-HA columns is about 47.41 +/- 3.02 nm. The n-HA crystals grow vertically with the substrate and the length of the crystals is 613.423 +/- 61.57 nm. Osteoblast-like MG63 cells were cultured on the nano-crystals in order to demonstrate the biocompatibility of these oriented n-HA crystals. The MTT assay suggests that the oriented n-HA crystals could promote cell proliferation. The overall results indicate the promising potential of oriented n-HA crystals for bone regeneration.
引用
收藏
页码:43040 / 43046
页数:7
相关论文
共 50 条
  • [11] Thermal conductivity reduction in highly doped mesoporous silicon: The effect of nano-crystal formation
    Vega-Flick, A.
    Pech-May, N. W.
    Cervantes-Alvarez, F.
    Estevez, J. O.
    Alvarado-Gil, J. J.
    JOURNAL OF APPLIED PHYSICS, 2018, 124 (08)
  • [12] Nano-crystal melting calculation for Al, Cu and Ag considering macro-crystal surface melting
    Jin, Bo
    Liu, Shuhong
    Du, Yong
    Kaptay, George
    Fu, Taibai
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (36) : 22278 - 22288
  • [13] Knowledge visualization and nano-crystal modeling geometry
    Constant, Jean
    APPLIED SURFACE SCIENCE, 2019, 473 : 668 - 672
  • [14] Nano-crystal/polymer composite photovoltaic devices
    Huynh, W
    Manna, L
    Alivisatos, AP
    IS&T'S NIP16: INTERNATIONAL CONFERENCE ON DIGITAL PRINTING TECHNOLOGIES, 2000, : 497 - 500
  • [15] Thermal conductivity reduction in highly doped mesoporous silicon: The effect of nano-crystal formation
    Vega-Flick, A. (avegaflick@gmail.com), 1600, American Institute of Physics Inc. (124):
  • [16] Biodegradable macroporous scaffold with nano-crystal surface microstructure for highly effective osteogenesis and vascularization
    Chu, Linyang
    Jiang, Guoqiang
    Hu, Xi-Le
    James, Tony D.
    He, Xiao-Peng
    Li, Yaping
    Tang, Tingting
    JOURNAL OF MATERIALS CHEMISTRY B, 2018, 6 (11) : 1658 - 1667
  • [17] A study on nano-composite of hydroxyapatite and polyamide
    Wei Jie
    Li Yubao
    Chen Weiqun
    Zuo yi
    Journal of Materials Science, 2003, 38 : 3303 - 3306
  • [18] A study on nano-composite of hydroxyapatite and polyamide
    Wei, J
    Li, YB
    Chen, WQ
    Zuo, Y
    JOURNAL OF MATERIALS SCIENCE, 2003, 38 (15) : 3303 - 3306
  • [19] In vitro study on the surface bioactivity of nano-hydroxyapatite/polyamide66 composite
    Peng, Xuelin
    Li, Yubao
    Yan, Yonggang
    Zhang, Li
    Wei, Jie
    Gaojishu Tongxin/High Technology Letters, 2003, 13 (12):
  • [20] Investigation of charging/discharging phenomena in nano-crystal memories
    De Salvo, B
    Ghibaudo, G
    Pananakakis, G
    Guillaumot, B
    Baron, T
    SUPERLATTICES AND MICROSTRUCTURES, 2000, 28 (5-6) : 339 - 344