On cutting planes for cardinality-constrained linear programs

被引:3
|
作者
Kim, Jinhak [1 ]
Tawarmalani, Mohit [2 ]
Richard, Jean-Philippe P. [3 ]
机构
[1] Univ S Alabama, Mitchell Coll Business, 307 N Univ Blvd, Mobile, AL 36608 USA
[2] Purdue Univ, Krannert Sch Management, 100 S Grant St, W Lafayette, IN 47907 USA
[3] Univ Florida, Dept Ind & Syst Engn, 303 Weil Hall, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
Complementarity/cardinality constraints; Disjunctive sets; Tableau cuts; Equate-and-relax procedure; Concavity cuts; Prim's algorithm; 0-1; KNAPSACK-PROBLEMS; LIFT-AND-PROJECT; ALGORITHM; SELECTION; CUTS; INEQUALITIES; FAMILY;
D O I
10.1007/s10107-018-1306-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We derive cutting planes for cardinality-constrained linear programs. These inequalities can be used to separate any basic feasible solution of an LP relaxation of the problem, assuming that this solution violates the cardinality requirement. To derive them, we first relax the given simplex tableau into a disjunctive set, expressed in the space of nonbasic variables. We establish that coefficients of valid inequalities for the closed convex hull of this set obey ratios that can be computed directly from the simplex tableau. We show that a transportation problem can be used to separate these inequalities. We then give a constructive procedure to generate violated facet-defining inequalities for the closed convex hull of the disjunctive set using a variant of Prim's algorithm.
引用
收藏
页码:417 / 448
页数:32
相关论文
共 50 条
  • [21] An Augmented Lagrangian Method for Cardinality-Constrained Optimization Problems
    Christian Kanzow
    Andreas B. Raharja
    Alexandra Schwartz
    Journal of Optimization Theory and Applications, 2021, 189 : 793 - 813
  • [22] A polynomial case of the cardinality-constrained quadratic optimization problem
    Jianjun Gao
    Duan Li
    Journal of Global Optimization, 2013, 56 : 1441 - 1455
  • [23] Lagrangian relaxation procedure for cardinality-constrained portfolio optimization
    Shaw, Dong X.
    Liu, Shucheng
    Kopman, Leonid
    OPTIMIZATION METHODS & SOFTWARE, 2008, 23 (03): : 411 - 420
  • [24] An Augmented Lagrangian Method for Cardinality-Constrained Optimization Problems
    Kanzow, Christian
    Raharja, Andreas B.
    Schwartz, Alexandra
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 189 (03) : 793 - 813
  • [25] A cardinality-constrained approach for robust machine loading problems
    Lugaresi, Giovanni
    Lanzarone, Ettore
    Frigerio, Nicola
    Matta, Andrea
    27TH INTERNATIONAL CONFERENCE ON FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING, FAIM2017, 2017, 11 : 1718 - 1725
  • [26] A polynomial case of the cardinality-constrained quadratic optimization problem
    Gao, Jianjun
    Li, Duan
    JOURNAL OF GLOBAL OPTIMIZATION, 2013, 56 (04) : 1441 - 1455
  • [27] Improved Linear-Time Streaming Algorithms for Maximizing Monotone Cardinality-Constrained Set Functions
    Cui, Min
    Du, Donglei
    Gai, Ling
    Yang, Ruiqi
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2024, 35 (06) : 631 - 650
  • [28] Convergent Inexact Penalty Decomposition Methods for Cardinality-Constrained Problems
    Lapucci, Matteo
    Levato, Tommaso
    Sciandrone, Marco
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 188 (02) : 473 - 496
  • [29] The cardinality-constrained shortest path problem in 2-graphs
    Dahl, G
    Realfsen, B
    NETWORKS, 2000, 36 (01) : 1 - 8
  • [30] Identifying the cardinality-constrained critical nodes with a hybrid evolutionary algorithm
    Liu, Chanjuan
    Ge, Shike
    Zhang, Yuanke
    INFORMATION SCIENCES, 2023, 642