Lie ideals in operator algebras

被引:0
|
作者
Hopenwasser, A [1 ]
Paulsen, V
机构
[1] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
[2] Univ Houston, Dept Math, Houston, TX 77204 USA
关键词
Lie ideals; Banach algebras; digraph algebras; nest algebras; triangular AF algebras;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be a Banach algebra for which the group of invertible elements is connected. A subspace C subset of or equal to A is a Lie ideal in A if and only if it is invariant under inner antomorphisins. This applies, in particular, to any canonical subalgebra of an AF C*-algebra. The same theorem is also proven for strongly closed subspaces of a totally atomic nest algebra whose atoms are ordered as a subset of the integers and for CSL subalgebras of such nest algebras. We also give a detailed description of the structure of a Lie ideal in any canonical triangular subalgebra of an AF C*-algebra.
引用
收藏
页码:325 / 340
页数:16
相关论文
共 50 条
  • [41] Fuzzy ideals and fuzzy subalgebras of Lie algebras
    Yehia, SE
    FUZZY SETS AND SYSTEMS, 1996, 80 (02) : 237 - 244
  • [42] A decomposition theorem for Lie ideals in nest algebras
    J. Almeida
    L. Oliveira
    Archiv der Mathematik, 2011, 97 : 549 - 558
  • [43] An Elemental Characterization of Orthogonal Ideals in Lie Algebras
    Jose Brox
    Esther García
    Miguel Gómez Lozano
    Mediterranean Journal of Mathematics, 2014, 11 : 1061 - 1067
  • [44] Inner ideals of finitary simple Lie algebras
    López, AF
    García, E
    Lozano, MG
    JOURNAL OF LIE THEORY, 2006, 16 (01) : 97 - 114
  • [45] A characterisation of Lie algebras using ideals and subalgebras
    Dotsenko, Vladimir
    Garcia-Martinez, Xabier
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (07) : 2408 - 2423
  • [46] Ideals in parabolic subalgebras of simple Lie algebras
    Chari, Vyjayanthi
    Dolbin, R. J.
    Ridenour, T.
    SYMMETRY IN MATHEMATICS AND PHYSICS, 2009, 490 : 47 - 60
  • [47] Higher derivations on Lie ideals of triangular algebras
    Han, D.
    SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (06) : 1029 - 1036
  • [48] Lie algebras of derivations with large abelian ideals
    Klymenko, I. S.
    Lysenko, S., V
    Petravchuk, A. P.
    ALGEBRA AND DISCRETE MATHEMATICS, 2019, 28 (01): : 123 - 129
  • [49] SOLVABLE LIE-ALGEBRAS WITH HEISENBERG IDEALS
    RUBIN, JL
    WINTERNITZ, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (05): : 1123 - 1138
  • [50] DELTA-IDEALS OF LIE COLOR ALGEBRAS
    BERGEN, J
    PASSMAN, DS
    JOURNAL OF ALGEBRA, 1995, 177 (03) : 740 - 754