ON THE SELMER GROUP OF A CERTAIN p-ADIC LIE EXTENSION

被引:0
|
作者
Bhave, Amala [1 ]
Bora, Lachit [1 ]
机构
[1] Jawaharlal Nehru Univ, Sch Phys Sci, New Delhi 110067, India
关键词
elliptic curve; anticyclotomic extension; Galois group; Iwasawa module; Selmer group; ABELIAN VARIETIES; RATIONAL POINTS; VALUES;
D O I
10.1017/S0004972719000108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be an elliptic curve over Q without complex multiplication. Let p >= 5 be a prime in Q and suppose that E has good ordinary reduction at p. We study the dual Selmer group of E over the compositum of the GL(2) extension and the anticyclotomic Z(p)-extension of an imaginary quadratic extension as an Iwasawa module.
引用
收藏
页码:245 / 255
页数:11
相关论文
共 50 条
  • [21] RAMIFICATION IN P-ADIC LIE EXTENSIONS
    SEN, S
    INVENTIONES MATHEMATICAE, 1972, 17 (01) : 44 - &
  • [22] Fine Selmer groups of congruent p-adic Galois representations
    Kleine, Soeren
    Mueller, Katharina
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2022, 65 (03): : 702 - 722
  • [23] Approximation by p-adic Lie groups
    Glöckner, H
    GLASGOW MATHEMATICAL JOURNAL, 2002, 44 : 231 - 239
  • [24] Uniscalar p-adic Lie groups
    Glöckner, H
    Willis, GA
    FORUM MATHEMATICUM, 2001, 13 (03) : 413 - 421
  • [25] On Selmer groups and factoring p-adic L-functions
    Palvannan, Bharathwaj
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (24) : 7483 - 7554
  • [26] Lie algebra associated with the group of finitary automorphisms of p-adic tree
    Bondarenko, N. V.
    Gupta, C. K.
    Sushchansky, V. I.
    JOURNAL OF ALGEBRA, 2010, 324 (09) : 2198 - 2218
  • [27] Invariant measures on p-adic Lie groups: the p-adic quaternion algebra and the Haar integral on the p-adic rotation groups
    Aniello, Paolo
    L'Innocente, Sonia
    Mancini, Stefano
    Parisi, Vincenzo
    Svampa, Ilaria
    Winter, Andreas
    LETTERS IN MATHEMATICAL PHYSICS, 2024, 114 (03)
  • [28] The extension of p-adic compact operators
    Grande-de Kimpe, ND
    Perez-Garcia, C
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2002, 32 (01) : 105 - 122
  • [29] THE SOLUBILITY OF CERTAIN P-ADIC EQUATIONS
    SCHMIDT, WM
    JOURNAL OF NUMBER THEORY, 1984, 19 (01) : 63 - 80
  • [30] P-ADIC SUPERANALYSIS .3. THE STRUCTURE OF P-ADIC SUPER-LIE GROUPS
    CIANCI, R
    KHRENNIKOV, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (03) : 1252 - 1259