LIFE CYCLE ASSESSMENT OF BIO-BASED THERMAL INSULATION MATERIALS FORMED BY DIFFERENT METHODS

被引:0
|
作者
Usubharatana, Phairat [1 ]
Phungrassami, Harnpon [1 ]
机构
[1] Thammasat Univ, Fac Engn, Excellence Ctr Ecoenergy, Chem Engn Dept, Bangkok, Thailand
来源
关键词
agricultural waste; concentrated latex; hot-pressing; life cycle assessment; thermal insulation; ECO-EFFICIENCY; DURIAN PEEL; ACOUSTICAL CHARACTERIZATIONS; PERFORMANCE EVALUATION; SUNFLOWER STALK; STEAM EXPLOSION; RICE STRAW; LOW-COST; WASTE; COMPOSITE;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Inorganic thermal insulators are commonly used to improve energy efficiency. However, environmental and health aspects of their production until the end of life have been increasingly concerned. Agricultural wastes including rice straw, rice husk and corn cobs are abundant in Thailand and converted into value-added products such as thermal insulation materials offers a viable recycling opportunity as the ecological burden of a product has now become a widely-discussed issue. In this paper, global warming potential impact of thermal insulation materials made from agricultural wastes; rice straw, bagasse, coconut coir and oil palm fibre, were assessed by using IPCC 2007, while Eco-indicator 99 was applied to evaluate the endpoint impact. Moreover, those impact of three different forming processes including (i) hot-pressing, (ii) using concentrated latex as a binder and (iii) using mixed concentrated latex-chemicals as a binder were compared. The physical properties of the insulation pads were tested to identify qualities such as density, water absorption, thickness swelling, fire resistance and thermal conductivity. The eco-efficiency of the insulation pads was also measured the performance and environmental impact and compared with commercial thermal insulators. Results revealed that thermal insulators formed by mixed concentrated latex-chemicals had the lowest thermal conductivity, while those formed by hot-pressing had the highest. Thermal conductivity of the four agricultural waste thermal insulation materials varied between0.042-0.087 W/mK. Insulators made from rice straw caused the greatest environmental impact followed by those made from bagasse, coconut coir and oil palm fibre respectively. The result of eco-efficiency of oil palm fibre insulator, formed by mixed concentrated latex-chemical, was best presented and closed to the eco-efficiency of commercial thermal insulators.
引用
收藏
页码:1471 / 1486
页数:16
相关论文
共 50 条
  • [31] Thermal characterisation of bio-based building materials
    Costanzo, S.
    Cusumano, A.
    Giaconia, C.
    Giaconia, G.
    SUSTAINABLE CITY IV : URBAN REGENERATION AND SUSTAINABILITY, 2006, 93 : 39 - +
  • [32] Assessment of the Usability of Some Bio-Based Insulation Materials in Double-Skin Steel Envelopes
    Hoxha, Dashnor
    Ismail, Brahim
    Rotaru, Ancuta
    Izabel, David
    Renaux, Thibaut
    SUSTAINABILITY, 2022, 14 (17)
  • [33] Sustainability assessment methods for circular bio-based building materials: A literature review
    Le, Dinh Linh
    Salomone, Roberta
    Nguyen, Quan T.
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 352
  • [34] Life cycle assessment and life cycle cost of buildings' insulation materials in Italy
    Lazzarin, Renato M.
    Busato, Filippo
    Castellotti, Francesco
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2008, 3 (01) : 44 - 58
  • [35] Nano Insulation Materials: Synthesis and Life Cycle Assessment
    Gao, Tao
    Sandberg, Linn Ingunn C.
    Jelle, Bjorn Petter
    21ST CIRP CONFERENCE ON LIFE CYCLE ENGINEERING, 2014, 15 : 490 - 495
  • [36] Comparative Life Cycle Assessment of Marine Insulation Materials
    Jang, Hayoung
    Jang, Yoonwon
    Jeong, Byongug
    Cho, Nak-Kyun
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (10)
  • [37] Gypsum, Geopolymers, and Starch-Alternative Binders for Bio-Based Building Materials: A Review and Life-Cycle Assessment
    Bumanis, Girts
    Vitola, Laura
    Pundiene, Ina
    Sinka, Maris
    Bajare, Diana
    SUSTAINABILITY, 2020, 12 (14)
  • [38] Experimental thermal characterization of bio-based materials (Aleppo Pine wood, cork and their composites) for building insulation
    Limam, Amel
    Zerizer, Abdellatif
    Quenard, Daniel
    Sallee, Hebert
    Chenak, Abdelkrim
    ENERGY AND BUILDINGS, 2016, 116 : 89 - 95
  • [39] Determination of hygrothermal parameters of experimental and commercial bio-based insulation materials
    Palumbo, M.
    Lacasta, A. M.
    Holcroft, N.
    Shea, A.
    Walker, P.
    CONSTRUCTION AND BUILDING MATERIALS, 2016, 124 : 269 - 275
  • [40] Towards aromatics from biomass: Prospective Life Cycle Assessment of bio-based aniline
    Winter, Benedikt
    Meys, Raoul
    Bardow, Andre
    JOURNAL OF CLEANER PRODUCTION, 2021, 290