Upper quantum Lyapunov exponent and parametric oscillators

被引:12
|
作者
Jauslin, HR
Sapin, O
Guérin, S
Wreszinski, WF
机构
[1] Univ Bourgogne, CNRS, UMR 5027, Phys Lab, F-21078 Dijon, France
[2] Univ Sao Paulo, Inst Fis, BR-05315970 Sao Paulo, Brazil
关键词
D O I
10.1063/1.1803926
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a definition of upper Lyapunov exponent for quantum systems in the Heisenberg representation, and apply it to parametric quantum oscillators. We provide a simple proof that the upper quantum Lyapunov exponent ranges from zero to a positive value, as the parameters range from the classical system's region of stability to the instability region. It is also proved that in the instability region the parametric quantum oscillator satisfies the discrete quantum Anosov relations defined by Emch, Narnhofer, Sewell, and Thirring. (C) 2004 American Institute of Physics.
引用
收藏
页码:4377 / 4385
页数:9
相关论文
共 50 条
  • [21] Moment Lyapunov exponent and stochastic stability of two coupled oscillators driven by real noise
    Namachchivaya, NS
    Van Roessel, HJ
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2001, 68 (06): : 903 - 914
  • [22] An upper bound for the largest Lyapunov exponent of a Markovian product of nonnegative matrices
    Gharavi, R
    Anantharam, V
    THEORETICAL COMPUTER SCIENCE, 2005, 332 (1-3) : 543 - 557
  • [23] MAXIMAL LYAPUNOV EXPONENT AND ROTATION NUMBERS FOR 2 COUPLED OSCILLATORS DRIVEN BY REAL NOISE
    NAMACHCHIVAYA, NS
    VANROESSEL, HJ
    JOURNAL OF STATISTICAL PHYSICS, 1993, 71 (3-4) : 549 - 567
  • [24] The top Lyapunov exponent for a stochastic flow modeling the upper ocean turbulence
    Piterbarg, LI
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (03) : 777 - 800
  • [25] MONOLITHIC OPTICAL PARAMETRIC OSCILLATORS FOR QUANTUM OPTICS
    NABORS, CD
    BYER, RL
    COHERENCE AND QUANTUM OPTICS VI, 1989, : 787 - 791
  • [26] Quantum finite time availability for parametric oscillators
    Hoffmann, Karl Heinz
    Schmidt, Kim
    Salamon, Peter
    JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 2015, 40 (02) : 121 - 129
  • [27] Classical and quantum properties of optical parametric oscillators
    Martinelli, M
    Alzar, CLG
    Ribeiro, PHS
    Nussenzveig, P
    BRAZILIAN JOURNAL OF PHYSICS, 2001, 31 (04) : 597 - 615
  • [28] Quantum State Tomography for Kerr Parametric Oscillators
    Suzuki Y.
    Kawabata S.
    Yamamoto T.
    Masuda S.
    Physical Review Applied, 2023, 20 (03)
  • [29] Convexity of the Lyapunov exponent
    Volkmer, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 294 (1-3) : 35 - 48
  • [30] Convexity of the Lyapunov exponent
    Linear Algebra Its Appl, 1-3 (35-48):