Cold-Start Recommendation with Provable Guarantees: A Decoupled Approach

被引:45
|
作者
Barjasteh, Iman [1 ]
Forsati, Rana [2 ]
Ross, Dennis [2 ]
Esfahanian, Abdol-Hossein [2 ]
Radha, Hayder [1 ]
机构
[1] Michigan State Univ, Dept Elect & Comp & Engn, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Comp Sci & Engn, E Lansing, MI 48824 USA
关键词
Recommender systems; cold-start problem; matrix completion; transduction; MATRIX FACTORIZATION; FRAMEWORK; SYSTEMS;
D O I
10.1109/TKDE.2016.2522422
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although the matrix completion paradigm provides an appealing solution to the collaborative filtering problem in recommendation systems, some major issues, such as data sparsity and cold-start problems, still remain open. In particular, when the rating data for a subset of users or items is entirely missing, commonly known as the cold-start problem, the standard matrix completion methods are inapplicable due the non-uniform sampling of available ratings. In recent years, there has been considerable interest in dealing with cold-start users or items that are principally based on the idea of exploiting other sources of information to compensate for this lack of rating data. In this paper, we propose a novel and general algorithmic framework based on matrix completion that simultaneously exploits the similarity information among users and items to alleviate the cold-start problem. In contrast to existing methods, our proposed recommender algorithm, dubbed DecRec, decouples the following two aspects of the cold-start problem to effectively exploit the side information: (i) the completion of a rating sub-matrix, which is generated by excluding cold-start users/items from the original rating matrix; and (ii) the transduction of knowledge from existing ratings to cold-start items/users using side information. This crucial difference prevents the error propagation of completion and transduction, and also significantly boosts the performance when appropriate side information is incorporated. The recovery error of the proposed algorithm is analyzed theoretically and, to the best of our knowledge, this is the first algorithm that addresses the cold-start problem with provable guarantees on performance. Additionally, we also address the problem where both cold-start user and item challenges are present simultaneously. We conduct thorough experiments on real datasets that complement our theoretical results. These experiments demonstrate the effectiveness of the proposed algorithm in handling the cold-start users/items problem and mitigating data sparsity issue.
引用
收藏
页码:1462 / 1474
页数:13
相关论文
共 50 条
  • [21] Wasserstein Collaborative Filtering for Item Cold-start Recommendation
    Meng, Yitong
    Yan, Xiao
    Liu, Weiwen
    Wu, Huanhuan
    Cheng, James
    UMAP'20: PROCEEDINGS OF THE 28TH ACM CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION, 2020, : 318 - 322
  • [22] Item Cold-Start Recommendation with Personalized Feature Selection
    Chen, Yi-Fan
    Zhao, Xiang
    Liu, Jin-Yuan
    Ge, Bin
    Zhang, Wei-Ming
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2020, 35 (05) : 1217 - 1230
  • [23] Cold-start recommendation strategy based on social graphs
    Hannech, Amel
    Adda, Mehdi
    Mcheick, Hamid
    7TH IEEE ANNUAL INFORMATION TECHNOLOGY, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE IEEE IEMCON-2016, 2016,
  • [24] Temporally and Distributionally Robust Optimization for Cold-Start Recommendation
    Lin, Xinyu
    Wang, Wenjie
    Zhao, Jujia
    Li, Yongqi
    Feng, Fuli
    Chua, Tat-Seng
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 8, 2024, : 8750 - 8758
  • [25] FEW: Multi-modal Recommendation for Cold-Start
    Ye, Qiwei
    Qiao, Linbo
    Ou, Zhixin
    Yang, Kaixi
    Yang, Fan
    2024 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN 2024, 2024,
  • [26] A Heterogeneous Graph Neural Model for Cold-start Recommendation
    Liu, Siwei
    Ounis, Iadh
    Macdonald, Craig
    Meng, Zaiqiao
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 2029 - 2032
  • [27] Generative Adversarial Framework for Cold-Start Item Recommendation
    Chen, Hao
    Wang, Zefan
    Huang, Feiran
    Huang, Xiao
    Xu, Yue
    Lin, Yishi
    He, Peng
    Li, Zhoujun
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 2565 - 2571
  • [28] Item Cold-Start Recommendation with Personalized Feature Selection
    Yi-Fan Chen
    Xiang Zhao
    Jin-Yuan Liu
    Bin Ge
    Wei-Ming Zhang
    Journal of Computer Science and Technology, 2020, 35 : 1217 - 1230
  • [29] Cold-start Sequential Recommendation via Meta Learner
    Zheng, Yujia
    Liu, Siyi
    Li, Zekun
    Wu, Shu
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 4706 - 4713
  • [30] Meta-Learning for User Cold-Start Recommendation
    Bharadhwaj, Homanga
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,