Fractional-Order Model of DC Motor

被引:12
|
作者
Cipin, R. [1 ]
Ondrusek, C. [1 ]
Huzlik, R. [1 ]
机构
[1] Brno Univ Technol, Fac Elect Engn & Commun, Brno 61600, Czech Republic
关键词
D O I
10.1007/978-3-319-02294-9_46
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article deals with application of fractional calculus in a model of a DC motor. The basic assumption of fractional calculus is that the classical derivative can be generalized to non-integer one. The basic definitions of fractional calculus are presented. The fractional model of DC motor is simulated by a numerical scheme based on a Grunwald-Letnikov derivative. Possible usage of fractional calculus is shown for modeling a friction in electric machines.
引用
收藏
页码:363 / 370
页数:8
相关论文
共 50 条
  • [21] Fractional-order backstepping strategy for fractional-order model of COVID-19 outbreak
    Veisi, Amir
    Delavari, Hadi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (07) : 3479 - 3496
  • [22] A Modeling and Analysis Method for Fractional-Order DC-DC Converters
    Chen, Xi
    Chen, Yanfeng
    Zhang, Bo
    Qiu, Dongyuan
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2017, 32 (09) : 7034 - 7044
  • [23] Fractional-Order Gas Film Model
    Tang, Xu
    Luo, Ying
    Han, Bin
    FRACTAL AND FRACTIONAL, 2022, 6 (10)
  • [24] A Novel Fractional-Order RothC Model
    Bohaienko, Vsevolod
    Diele, Fasma
    Marangi, Carmela
    Tamborrino, Cristiano
    Aleksandrowicz, Sebastian
    Wozniak, Edyta
    MATHEMATICS, 2023, 11 (07)
  • [25] A Fractional-Order Dynamic PV Model
    AbdelAty, Amr M.
    Radwan, Ahmed G.
    Elwakil, Ahmed
    Psychalinos, Costas
    2016 39TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2016, : 607 - 610
  • [26] A fractional-order infectivity SIR model
    Angstmann, C. N.
    Henry, B. I.
    McGann, A. V.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 452 : 86 - 93
  • [27] Fractional-Order in a Macroeconomic Dynamic Model
    David, S. A.
    Quintino, D. D.
    Soliani, J.
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 2142 - 2146
  • [28] A fractional-order model for MINMOD Millennium
    Cho, Yongjin
    Kim, Imbunm
    Sheen, Dongwoo
    MATHEMATICAL BIOSCIENCES, 2015, 262 : 36 - 45
  • [29] A Study of a Fractional-Order Cholera Model
    Javidi, Mohammad
    Ahmad, Bashir
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2014, 8 (05): : 2195 - 2206
  • [30] CHAOS IN FRACTIONAL-ORDER POPULATION MODEL
    Petras, Ivo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (04):