Factorizations of polynomials with integral non-negative coefficients

被引:17
|
作者
Campanini, Federico [1 ]
Facchini, Alberto [1 ]
机构
[1] Univ Padua, Dipartimento Matemat Tullio Levi Civita, I-35121 Padua, Italy
关键词
Factorizations of polynomials; Polynomials with integral coefficients; Polynomials with non-negative coefficients; Krull monoids; MONOIDS;
D O I
10.1007/s00233-018-9979-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the structure of the commutative multiplicative monoid N0[x]*of all the non-zero polynomials in Z[x] with non-negative coefficients. The monoid N-0[x]* is not half-factorial and is not a Krull monoid, but has a structure very similar to that of Krull monoids, replacing valuations into N-0 with derivations into N-0. We study ideals, chain of ideals, prime ideals and prime elements of N-0[x]*. Our monoid N-0[x]* is a submonoid of the multiplicative monoid of the ring Z[x], which is a left module over the Weyl algebra A(1)(Z).
引用
收藏
页码:317 / 332
页数:16
相关论文
共 50 条
  • [21] Improving non-negative matrix factorizations through structured initialization
    Wild, S
    Curry, J
    Dougherty, A
    PATTERN RECOGNITION, 2004, 37 (11) : 2217 - 2232
  • [22] A penalty function for computing orthogonal non-negative matrix factorizations
    Del Buono, Nicoletta
    2009 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, 2009, : 1001 - 1005
  • [24] Sparse non-negative matrix factorizations for ultrasound factor analysis
    Chen, Xi
    Wu, Kaizhi
    Ding, Mingyue
    Sang, Nong
    OPTIK, 2013, 124 (23): : 5891 - 5897
  • [25] EXTREMUM PROBLEMS ON NON-NEGATIVE TRIGONOMETRIC POLYNOMIALS
    ROGOSINSKI, WW
    SZEGO, G
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 55 (11) : 1064 - 1064
  • [26] Univalent polynomials and non-negative trigonometric sums
    Gluchoff, A
    Hartmann, F
    AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (06): : 508 - 522
  • [27] Non-negative hereditary polynomials in a free *-algebra
    Helton, JW
    McCullough, SA
    Putinar, M
    MATHEMATISCHE ZEITSCHRIFT, 2005, 250 (03) : 515 - 522
  • [28] Non-negative hereditary polynomials in a free *−algebra
    J. William Helton
    Scott A. McCullough
    Mihai Putinar
    Mathematische Zeitschrift, 2005, 250 : 515 - 522
  • [29] PROPERTIES OF THE CONE OF NON-NEGATIVE POLYNOMIALS AND DUALITY
    Hrdina, J.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2023, 92 (03): : 225 - 239
  • [30] AN EXTREMAL PROBLEM FOR NON-NEGATIVE TRIGONOMETRIC POLYNOMIALS
    GOLDSTEIN, M
    MCDONALD, JN
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1984, 29 (FEB): : 81 - 88