Evaluation of CNN as anthropomorphic model observer

被引:25
|
作者
Massanes, Francesc [1 ]
Brankov, Jovan G. [1 ]
机构
[1] IIT, Med Imaging Res Ctr, Chicago, IL 60613 USA
来源
MEDICAL IMAGING 2017: IMAGE PERCEPTION, OBSERVER PERFORMANCE, AND TECHNOLOGY ASSESSMENT | 2017年 / 10136卷
关键词
CHO; CNN; Convolutional; Neural Network; Model Observer; SPECT;
D O I
10.1117/12.2254603
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Model observers (MO) are widely used in medical imaging to act as surrogates of human observers in task- based image quality evaluation, frequently towards optimization of reconstruction algorithms. In this paper, we explore the use of convolutional neural networks (CNN) to be used as MO. We will compare CNN MO to alternative MO currently being proposed and used such as the relevance vector machine based MO and channelized Hotelling observer (CHO). As the success of the CNN, and other deep learning approaches, is rooted in large data sets availability, which is rarely the case in medical imaging systems task- performance evaluation, we will evaluate CNN performance on both large and small training data sets.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Performance Evaluation of CNN Model for Automatic Segmentation of Intraprostatic Cancer Lesions
    Mongardi, S.
    Ghezzo, S.
    Bezzi, C.
    Neri, I.
    Mapelli, P.
    Gajate, A. M. Samanes
    Preza, E.
    Bettinardi, V.
    Russo, T.
    Brembilla, G.
    De Cobelli, F.
    Gianolli, L.
    Scifo, P.
    Picchio, M.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (SUPPL 1) : S285 - S286
  • [32] The Evaluation on the Credit Risk of Enterprises with the CNN-LSTM-ATT Model
    Zhang, Lei
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [33] An anthropomorphic phantom for quantitative evaluation of breast MRI
    Freed, Melanie
    de Zwart, Jacco A.
    Loud, Jennifer T.
    El Khouli, Riham H.
    Myers, Kyle J.
    Greene, Mark H.
    Duyn, Jeff H.
    Badano, Aldo
    MEDICAL PHYSICS, 2011, 38 (02) : 743 - 753
  • [34] Evaluation of the Handshake Turing Test for anthropomorphic Robots
    Stock-Homburg, Ruth
    Peters, Jan
    Schneider, Katharina
    Prasad, Vignesh
    Nukovic, Lejla
    HRI'20: COMPANION OF THE 2020 ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION, 2020, : 456 - 458
  • [35] Evaluation of An Anthropomorphic Pelvis Phantom for Proton Therapy
    Grant, R.
    Ibbott, G.
    Sahoo, N.
    Tucker, S.
    Zhu, X.
    Followill, D.
    MEDICAL PHYSICS, 2009, 36 (06) : 2607 - +
  • [36] CNN as model observer in a liver lesion detection task for x-ray computed tomography: A phantom study
    Kopp, Felix K.
    Catalano, Marco
    Pfeiffer, Daniela
    Fingerle, Alexander A.
    Rummeny, Ernst J.
    Noel, Peter B.
    MEDICAL PHYSICS, 2018, 45 (10) : 4439 - 4447
  • [37] Evaluation of a PAGAT Gel for Use in An Anthropomorphic Phantom
    Heard, M.
    Ibbott, G.
    Followill, D.
    Jackson, E.
    Salehpour, M.
    White, A.
    MEDICAL PHYSICS, 2009, 36 (06) : 2581 - +
  • [38] Evaluation of anthropomorphic feedback for an online auction and affordances
    Murano, Pietro
    Holt, Patrik O'Brian
    International Journal of Computer Science Issues, 2011, 8 (02): : 13 - 21
  • [39] Integral sliding mode control for an anthropomorphic finger based on nonlinear extended state observer
    Zhao, Ling
    Peng, Meiqin
    Li, Zhuojun
    He, Minghui
    ISA TRANSACTIONS, 2024, 153 : 433 - 442
  • [40] IDEAL-OBSERVER COMPUTATION WITH ANTHROPOMORPHIC PHANTOMS USING MARKOV CHAIN MONTE CARLO
    Rahman, Md Ashequr
    Yu, Zitong
    Jha, Abhinav K.
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,