On Gelfand-Tsetlin bases for representations of classical Lie algebras

被引:0
|
作者
Molev, AI [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a weight basis for each finite-dimensional irreducible representation of the simple complex Lie algebra g(n) of type B-n, C-n, or D-n. We derive explicit formulas for the matrix elements of generators of the Lie algebra in this basis. The basis vectors are parameterized by the Gelfand-Tsetlin patterns associated with the chain of subalgebras g(1) subset of g(2) subset of...subset of g(n) The construction is based on the representation theory of the Yangians.
引用
收藏
页码:300 / 308
页数:9
相关论文
共 50 条
  • [31] Alcove Paths and Gelfand-Tsetlin Patterns
    Watanabe, Hideya
    Yamamura, Keita
    ANNALS OF COMBINATORICS, 2021, 25 (03) : 645 - 676
  • [32] FIBERS OF CHARACTERS IN GELFAND-TSETLIN CATEGORIES
    Futorny, Vyacheslav
    Ovsienko, Serge
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (08) : 4173 - 4208
  • [33] Universality properties of Gelfand-Tsetlin patterns
    Metcalfe, Anthony P.
    PROBABILITY THEORY AND RELATED FIELDS, 2013, 155 (1-2) : 303 - 346
  • [34] Gelfand-Tsetlin Modules: Canonicity and Calculations
    Silverthorne, Turner
    Webster, Ben
    ALGEBRAS AND REPRESENTATION THEORY, 2024, 27 (02) : 1405 - 1455
  • [35] Gelfand-Tsetlin pattern and strict partitions
    Cheng, SJ
    LETTERS IN MATHEMATICAL PHYSICS, 2003, 64 (01) : 23 - 30
  • [36] BASES OF CLASSICAL LIE-ALGEBRAS IRREDUCIBLE REPRESENTATIONS
    LUDKOVSKY, SV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1990, (05): : 18 - 25
  • [37] Lax formalism for Gelfand-Tsetlin integrable systems
    Correa, Eder M.
    Grama, Lino
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 170
  • [38] The Gelfand-Tsetlin bases for Hodge-de Rham systems in Euclidean spaces
    Delanghe, Richard
    Lavicka, Roman
    Soucek, Vladimir
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (07) : 745 - 757
  • [39] Combinatorial construction of Gelfand-Tsetlin modules for gln
    Futorny, Vyacheslav
    Ramirez, Luis Enrique
    Zhang, Jian
    ADVANCES IN MATHEMATICS, 2019, 343 : 681 - 711
  • [40] (-1)-enumerations of arrowed Gelfand-Tsetlin patterns
    Fischer, Ilse
    Schreier-Aigner, Florian
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 120