SCHRODINGER EQUATIONS WITH TIME-DEPENDENT STRONG MAGNETIC FIELDS

被引:2
|
作者
Aiba, D. [1 ]
Yajima, K. [1 ]
机构
[1] Gakushuin Univ, Dept Math, Toshima Ku, Tokyo 1718588, Japan
关键词
Unitary propagator; Schrodinger equation; magnetic field; quantum dynamics; Stummel class; Kato class; SINGULAR POTENTIALS; EVOLUTION-EQUATIONS; OPERATORS;
D O I
10.1090/S1061-0022-2014-01284-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Time dependent d-dimensional Schrodinger equations i partial derivative(t)u = H(t)u, H(t) = -(partial derivative(x) - iA(t, x))(2) + V(t, x) are considered in the Hilbert space G = L-2(R-d) of square integrable functions. V (t, x) and A(t, x) are assumed to be almost critically singular with respect to the spatial variables x is an element of R-d both locally and at infinity for the operator H(t) to be essentially selfadjoint on C-0(infinity) (R-d). In particular, when the magnetic fields B(t, x) produced by A(t, x) are very strong at infinity, V (t, x) can explode to the negative infinity like -theta vertical bar B(t, x)vertical bar - C(vertical bar x vertical bar(2) + 1) for some theta < 1 and C > 0. It is shown that such equations uniquely generate unitary propagators in G under suitable conditions on the size and singularities of the time derivatives of the potentials (V) over dot(t, x) and (A) over dot(t, x).
引用
收藏
页码:175 / 194
页数:20
相关论文
共 50 条
  • [21] Variational approach to the time-dependent Schrodinger-Newton equations
    Manfredi, Giovanni
    Hervieux, Paul-Antoine
    Haas, Fernando
    CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (07)
  • [22] Solutions for One-Dimensional Time-Dependent Schrodinger Equations
    Jiang, Tongsong
    Wang, Xiaolei
    Zhang, Zhaozhong
    INFORMATION COMPUTING AND APPLICATIONS, PT 2, 2012, 308 : 371 - 378
  • [23] Darboux transformations for time-dependent Schrodinger equations with effective mass
    Schulze-Halberg, A
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (06): : 1359 - 1377
  • [24] Spectral fitting method for the solution of time-dependent Schrodinger equations: Applications to atoms in intense laser fields
    Qiao, HX
    Cai, QY
    Rao, JG
    Li, BW
    PHYSICAL REVIEW A, 2002, 65 (06): : 5
  • [25] FERROMAGNETIC MAGNONS IN TIME-DEPENDENT MAGNETIC FIELDS
    REZENDE, SM
    ZAGURY, N
    PHYSICAL REVIEW LETTERS, 1969, 22 (22) : 1182 - &
  • [26] Time - The forgotten dimension: A new method for the solution of time-dependent Schrodinger equations
    Travlos, SD
    Watson, BA
    SOUTH AFRICAN JOURNAL OF CHEMISTRY-SUID-AFRIKAANSE TYDSKRIF VIR CHEMIE, 1995, 48 (1-2): : 44 - 47
  • [27] Production of π0 in a strong, time-dependent magnetic field
    Di Piazza, A
    Calucci, G
    MODERN PHYSICS LETTERS A, 2005, 20 (02) : 117 - 125
  • [28] QUANTUM-MECHANICS IN STRONG TIME-DEPENDENT EXTERNAL FIELDS
    POMEAU, Y
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1986, 45 (01): : 29 - 47
  • [29] Time-dependent variational approach to molecules in strong laser fields
    Kreibich, T
    van Leeuwen, R
    Gross, EKU
    CHEMICAL PHYSICS, 2004, 304 (1-2) : 183 - 202
  • [30] QUANTUM-WELLS AND SUPERLATTICES IN STRONG TIME-DEPENDENT FIELDS
    HOLTHAUS, M
    HONE, D
    PHYSICAL REVIEW B, 1993, 47 (11): : 6499 - 6508