Rhenium-promoted selective CO2 methanation on Ni-based catalyst

被引:55
|
作者
Yuan, Hongjuan [1 ]
Zhu, Xinli [1 ]
Han, Jinyu [1 ]
Wang, Hua [1 ]
Ge, Qingfeng [1 ,2 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Collaborat Innovat Ctr Chem Sci & Engn, Key Lab Green Chem Technol, Tianjin 300350, Peoples R China
[2] Southern Illinois Univ, Dept Chem & Biochem, Carbondale, IL 62901 USA
关键词
Ni-Re; Bimetallic catalyst; CO2; Methanation; Density functional theory; Microkinetic model; TOTAL-ENERGY CALCULATIONS; NOBLE-METAL CATALYSTS; CARBON-DIOXIDE; HYDROGENATION; SURFACE; NI(111); MECHANISMS; ADSORPTION; CONVERSION; NICKEL;
D O I
10.1016/j.jcou.2018.04.010
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Re-doped Ni(111) (Re@Ni(111)) surface was used as a model to investigate the effect of Re on the C-O bond scission and on the selectivity of CO2 methanation on a Ni-based catalyst. Three pathways, including CO2 dissociation into CO* followed by CO* hydrogenation, CO2 reduction through the HCOO* and COOH* intermediates, were analyzed based on the results from the density functional theory calculations. The results indicate that the presence of Re significantly lowers the activation barrier of C-O bond cleavage due to the strong affinity of Re to O but has no significant effect on the hydrogenation steps. Microkinetic analysis showed that the presence of Re greatly increases the selectivity toward CH4. Analysis of surface coverage of the adsorbed species showed that CO* and H* were the most abundant species on the Ni(111) surface whereas appreciable amount of O adatoms were present on Re@Ni(111) in addition to CO* and H*, with the O adatoms on the Re sites. On both surfaces, increasing H-2 partial pressure resulted in an increase in H* coverage but decreased CO* coverage. The strong affinity of Re toward O makes Re@Ni(111) more effective for C-O bond scission and thereby enhances methane selectivity.
引用
收藏
页码:8 / 18
页数:11
相关论文
共 50 条
  • [21] Identifying the key structural features of Ni-based catalysts for the CO2 methanation reaction
    Li, Zhi-Xin
    Fu, Xin-Pu
    Ma, Chao
    Wang, Wei -Wei
    Liu, Jin-Cheng
    Jia, Chun -Jiang
    JOURNAL OF CATALYSIS, 2024, 436
  • [22] Role of perovskites phase in Ni-based catalysts for low temperature CO2 methanation
    Usman, Muhammad
    Podila, Seetharamulu
    Al-Zahrani, Abdulrahim A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 95 : 173 - 184
  • [23] Cerium-promoted Ni/SiO2 catalyst for CO methanation
    Hou, Zhanggui
    Chen, Yiming
    Ma, Xin
    Zhou, Ling
    Wang, Wen
    Qiu, Jiesan
    Zhang, Yi
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2023, 101 (12): : 7068 - 7077
  • [24] Sponge Ni catalyst with high activity in CO2 methanation
    Tada, Shohei
    Ikeda, Shun
    Shimoda, Naohiro
    Honma, Tetsuo
    Takahashi, Makoto
    Nariyuki, Akane
    Satokawa, Shigeo
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (51) : 30126 - 30134
  • [25] A Ni-based catalyst with enhanced Ni-support interaction for highly efficient CO methanation
    Yan, Xiaoliang
    Yuan, Chen
    Bao, Jiehua
    Li, Sha
    Qi, Daizong
    Wang, Qianqian
    Zhao, Binran
    Hu, Tong
    Fan, Liming
    Fan, Binbin
    Li, Ruifeng
    Tao, Franklin
    Pan, Yun-Xiang
    CATALYSIS SCIENCE & TECHNOLOGY, 2018, 8 (14) : 3474 - 3483
  • [26] Effect of CO2 adsorbents on the Ni-based dual-function materials for CO2 capturing and in situ methanation
    Chai, Kian Hoong
    Leong, Loong Kong
    Wong, David Shan-Hill
    Tsai, De-Hao
    Sethupathi, Sumathi
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2020, 67 (06) : 998 - 1008
  • [27] An Active Manganese Promoted Ni/Al2O3 Catalyst for Low Temperature CO2 Methanation
    Yiming Chen
    Zhanggui Hou
    Chuan Wang
    Xin Ma
    Hong Yang
    Wen Wang
    Ling Zhou
    Yi Zhang
    Catalysis Letters, 2024, 154 : 943 - 951
  • [28] An Active Manganese Promoted Ni/Al2O3 Catalyst for Low Temperature CO2 Methanation
    Chen, Yiming
    Hou, Zhanggui
    Wang, Chuan
    Ma, Xin
    Yang, Hong
    Wang, Wen
    Zhou, Ling
    Zhang, Yi
    CATALYSIS LETTERS, 2024, 154 (03) : 943 - 951
  • [29] Aqueous Miscible Organic LDH Derived Ni-Based Catalysts for Efficient CO2 Methanation
    Wang, Ziling
    Huang, Liang
    Reina, Tomas Ramirez
    Efstathiou, Angelos M.
    Wang, Qiang
    CATALYSTS, 2020, 10 (10) : 1 - 15
  • [30] Modifying Spinel Precursors for Highly Active and Stable Ni-based CO2 Methanation Catalysts
    Weber, Dennis
    Wadlinger, Katja M.
    Heinlein, Maximilian M.
    Franken, Tanja
    CHEMCATCHEM, 2022, 14 (20)