3D skeleton-based action recognition with convolutional neural networks

被引:9
|
作者
Van-Nam Hoang [2 ]
Thi-Lan Le [2 ]
Thanh-Hai Tran [2 ]
Hai-Vu [2 ]
Van-Toi Nguyen [1 ]
机构
[1] Posts & Telecommun Inst Technol, Ho Chi Minh City, Vietnam
[2] Hanoi Univ Sci & Technol, MICA Int Res Inst, Grenoble INP, CNRS,UMI2954, Hanoi, Vietnam
关键词
action recognition; 3d skeleton; CNN; LSTM;
D O I
10.1109/mapr.2019.8743545
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Activity recognition based on skeletons has drawn a lot of attention due to its wide applications in human-computer interaction, surveillance system. Compare with image data, a skeleton has a benefit of the robustness with background changing and computing efficiently dues to its low dimensional representation. With the rise of deep neural networks, a lot of works has been applied using both CNN and LSTM networks to solve this problem. In this paper, we proposed a framework for action recognition using skeleton data and evaluate it with different network architectures. We first modify the feature representation by adding motion information to a skeleton image, which gives useful information to the networks. After that, different networks architectures have been employed and evaluated to give insight into how well it will perform on this kind of data. Finally, we evaluated the system on two public datasets NTU-RGB+D and CMDFall to show the efficiency and feasibility of the system. The proposed method achieves 76.8% and 45.23% on NTU-RGB+D and CMDFall, respectively, which is competitive results.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Hierarchically Decomposed Graph Convolutional Networks for Skeleton-Based Action Recognition
    Lee, Jungho
    Lee, Minhyeok
    Lee, Dogyoon
    Lee, Sangyoun
    Proceedings of the IEEE International Conference on Computer Vision, 2023, : 10410 - 10419
  • [22] Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition
    Yan, Sijie
    Xiong, Yuanjun
    Lin, Dahua
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 7444 - 7452
  • [23] Hierarchically Decomposed Graph Convolutional Networks for Skeleton-Based Action Recognition
    Lee, Jungho
    Lee, Minhyeok
    Lee, Dogyoon
    Lee, Sangyoun
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 10410 - 10419
  • [24] Hierarchically Decomposed Graph Convolutional Networks for Skeleton-Based Action Recognition
    Lee, Jungho
    Lee, Minhyeok
    Lee, Dogyoon
    Lee, Sangyoun
    arXiv, 2022,
  • [25] Learning Clip Representations for Skeleton-Based 3D Action Recognition
    Ke, Qiuhong
    Bennamoun, Mohammed
    An, Senjian
    Sohel, Ferdous
    Boussaid, Farid
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (06) : 2842 - 2855
  • [26] Learning to recognise 3D human action from a new skeleton-based representation using deep convolutional neural networks
    Huy-Hieu Pham
    Khoudour, Louahdi
    Crouzil, Alain
    Zegers, Pablo
    Velastin, Sergio A.
    IET COMPUTER VISION, 2019, 13 (03) : 319 - 328
  • [27] Dynamic Edge Convolutional Neural Network for Skeleton-Based Human Action Recognition
    Tasnim, Nusrat
    Baek, Joong-Hwan
    SENSORS, 2023, 23 (02)
  • [28] Convolutional neural network with adaptive inferential framework for skeleton-based action recognition
    Huang, Hong'en
    Su, Hang
    Chang, Zhigang
    Yu, Mingyang
    Gao, Jialin
    Li, Xinzhe
    Zheng, Shibao
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2020, 73
  • [29] 3D Convolutional Neural Networks for Human Action Recognition
    Ji, Shuiwang
    Xu, Wei
    Yang, Ming
    Yu, Kai
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (01) : 221 - 231
  • [30] Asymmetric 3D Convolutional Neural Networks for action recognition
    Yang, Hao
    Yuan, Chunfeng
    Li, Bing
    Du, Yang
    Xing, Junliang
    Hu, Weiming
    Maybank, Stephen J.
    PATTERN RECOGNITION, 2019, 85 : 1 - 12