Generalized Petersen Graphs and Kronecker Covers

被引:0
|
作者
Krnc, Matjaz [1 ,2 ,3 ]
Pisanski, Tomaz [1 ]
机构
[1] Univ Primorska, FAMNIT, Koper, Slovenia
[2] Univ Ljubljana, FMF, Ljubljana, Slovenia
[3] Inst Math Phys & Mech, Ljubljana, Slovenia
关键词
generalised Petersen graphs; Kronecker cover; I-GRAPHS;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The family of generalised Petersen graphs G(n, k), introduced by Coxeter et al. [4] and named byWatkins (1969), is a family of cubic graphs formed by connecting the vertices of a regular polygon to the corresponding vertices of a star polygon. The Kronecker cover KC(G) of a simple undirected graph G is a special type of bipartite covering graph of G, isomorphic to the direct (tensor) product of G and K-2. We characterize all generalised Petersen graphs that are Kronecker covers, and describe the structure of their respective quotients. We observe that some of such quotients are again generalised Petersen graphs, and describe all such pairs. The results of this paper have been presented at EUROCOMB 2019 and an extended abstract has been published elsewhere.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] On δ(k)-coloring of generalized Petersen graphs
    Ellumkalayil, Merlin Thomas
    Naduvath, Sudev
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (01)
  • [22] Vertex domination of generalized Petersen graphs
    Ebrahimi, B. Javad
    Jahanbakht, Nafiseh
    Mahmoodian, E. S.
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4355 - 4361
  • [23] On the total coloring of generalized Petersen graphs
    Dantas, S.
    de Figueiredo, C. M. H.
    Mazzuoccolo, G.
    Preissmann, M.
    dos Santos, V. F.
    Sasaki, D.
    DISCRETE MATHEMATICS, 2016, 339 (05) : 1471 - 1475
  • [24] TAIT COLORINGS ON GENERALIZED PETERSEN GRAPHS
    CASTAGNA, F
    PRINS, GCE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (04): : 639 - &
  • [25] Beyond symmetry in generalized Petersen graphs
    Garcia-Marco, Ignacio
    Knauer, Kolja
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (02) : 331 - 357
  • [26] Component connectivity of generalized Petersen graphs
    Ferrero, Daniela
    Hanusch, Sarah
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (09) : 1940 - 1963
  • [28] On the domination number of the generalized Petersen graphs
    Behzad, Arash
    Behzad, Mehdi
    Praeger, Cheryl E.
    DISCRETE MATHEMATICS, 2008, 308 (04) : 603 - 610
  • [29] Jacobsthal Numbers in Generalized Petersen Graphs
    Bruhn, Henning
    Gellert, Laura
    Guenther, Jacob
    JOURNAL OF GRAPH THEORY, 2017, 84 (02) : 146 - 157
  • [30] The decycling number of generalized Petersen graphs
    Gao, Liqing
    Xu, Xirong
    Wang, Jian
    Zhu, Dejun
    Yang, Yuansheng
    DISCRETE APPLIED MATHEMATICS, 2015, 181 : 297 - 300